The 8th Romanian Master of Mathematics Competition **Problem 4.** Let x and y be positive real numbers such that $x+y^{2016} \ge 1$. Prove that $x^{2016}+y > 1-1/100$. **Solution.** If $x \ge 1 - 1/(100 \cdot 2016)$, then $$x^{2016} \ge \left(1 - \frac{1}{100 \cdot 2016}\right)^{2016} > 1 - 2016 \cdot \frac{1}{100 \cdot 2016} = 1 - \frac{1}{100}$$ by Bernoulli's inequality, whence the conclusion. If $x < 1 - 1/(100 \cdot 2016)$, then $y \ge (1 - x)^{1/2016} > (100 \cdot 2016)^{-1/2016}$, and it is sufficient to show that the latter is greater than 1 - 1/100 = 99/100; alternatively, but equivalently, that $$\left(1 + \frac{1}{99}\right)^{2016} > 100 \cdot 2016.$$ To establish the latter, refer again to Bernoulli's inequality to write $$\left(1 + \frac{1}{99}\right)^{2016} > \left(1 + \frac{1}{99}\right)^{99 \cdot 20} > \left(1 + 99 \cdot \frac{1}{99}\right)^{20} = 2^{20} > 100 \cdot 2016.$$ **Remarks.** (1) Although the constant 1/100 is not sharp, it cannot be replaced by the smaller constant 1/400, as the values x = 1 - 1/210 and y = 1 - 1/380 show. (2) It is natural to ask whether $x^n + y \ge 1 - 1/k$, whenever x and y are positive real numbers such that $x + y^n \ge 1$, and k and n are large. Using the inequality $\left(1 + \frac{1}{k-1}\right)^k > e$, it can be shown along the lines in the solution that this is indeed the case if $k \le \frac{n}{2\log n}(1 + o(1))$. It seems that this estimate differs from the best one by a constant factor. **Problem 5.** A convex hexagon $A_1B_1A_2B_2A_3B_3$ is inscribed in a circle Ω of radius R. The diagonals A_1B_2 , A_2B_3 , and A_3B_1 concur at X. For i=1,2,3, let ω_i be the circle tangent to the segments XA_i and XB_i , and to the arc A_iB_i of Ω not containing other vertices of the hexagon; let r_i be the radius of ω_i . - (a) Prove that $R \ge r_1 + r_2 + r_3$. - (b) If $R = r_1 + r_2 + r_3$, prove that the six points where the circles ω_i touch the diagonals A_1B_2 , A_2B_3 , A_3B_1 are concyclic. **Solution.** (a) Let ℓ_1 be the tangent to Ω parallel to A_2B_3 , lying on the same side of A_2B_3 as ω_1 . The tangents ℓ_2 and ℓ_3 are defined similarly. The lines ℓ_1 and ℓ_2 , ℓ_2 and ℓ_3 , ℓ_3 and ℓ_1 meet at C_3 , C_1 , C_2 , respectively (see Fig. 1). Finally, the line C_2C_3 meets the rays XA_1 and XB_1 emanating from X at S_1 and T_1 , respectively; the points S_2 , T_2 , and S_3 , T_3 are defined similarly. Each of the triangles $\Delta_1 = \triangle X S_1 T_1$, $\Delta_2 = \triangle T_2 X S_2$, and $\Delta_3 = \triangle S_3 T_3 X$ is similar to $\Delta = \triangle C_1 C_2 C_3$, since their corresponding sides are parallel. Let k_i be the ratio of similitude of Δ_i and Δ (e.g., $k_1 = X S_1 / C_1 C_2$ and the like). Since $S_1 X = C_2 T_3$ and $X T_2 = S_3 C_1$, it follows that $k_1 + k_2 + k_3 = 1$, so, if ρ_i is the inradius of Δ_i , then $\rho_1 + \rho_2 + \rho_3 = R$. Finally, notice that ω_i is interior to Δ_i , so $r_i \leq \rho_i$, and the conclusion follows by the preceding. (b) By part (a), the equality $R = r_1 + r_2 + r_3$ holds if and only if $r_i = \rho_i$ for all i, which implies in turn that ω_i is the incircle of Δ_i . Let K_i , L_i , M_i be the points where ω_i touches the sides XS_i , XT_i , S_iT_i , respectively. We claim that the six points K_i and L_i (i = 1, 2, 3) are equidistant from X. Clearly, $XK_i = XL_i$, and we are to prove that $XK_2 = XL_1$ and $XK_3 = XL_2$. By similarity, $\angle T_1M_1L_1 = \angle C_3M_1M_2$ and $\angle S_2M_2K_2 = \angle C_3M_2M_1$, so the points M_1 , M_2 , L_1 , K_2 are collinear. Consequently, $\angle XK_2L_1 = \angle C_3M_1M_2 = \angle C_3M_2M_1 = \angle XL_1K_2$, so $XK_2 = XL_1$. Similarly, $XK_3 = XL_2$. **Remark.** Under the assumption in part (b), the point M_i is the centre of a homothety mapping ω_i to Ω . Since this homothety maps X to C_i , the points M_i , C_i , X are collinear, so X is the Gergonne point of the triangle $C_1C_2C_3$. This condition is in fact equivalent to $R = r_1 + r_2 + r_3$. **Problem 6.** A set of n points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned into two subsets \mathcal{A} and \mathcal{B} . An \mathcal{AB} -tree is a configuration of n-1 segments, each of which has an endpoint in \mathcal{A} and the other in \mathcal{B} , and such that no segments form a closed polyline. An \mathcal{AB} -tree is transformed into another as follows: choose three distinct segments A_1B_1 , B_1A_2 and A_2B_2 in the \mathcal{AB} -tree such that A_1 is in \mathcal{A} and $A_1B_1 + A_2B_2 > A_1B_2 + A_2B_1$, and remove the segment A_1B_1 to replace it by the segment A_1B_2 . Given any \mathcal{AB} -tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps. **Solution.** The configurations of segments under consideration are all bipartite geometric trees on the points n whose vertex-parts are \mathcal{A} and \mathcal{B} , and transforming one into another preserves the degree of any vertex in \mathcal{A} , but not necessarily that of a vertex in \mathcal{B} . The idea is to devise a strict semi-invariant of the process, i.e., assign each \mathcal{AB} -tree a real number strictly decreasing under a transformation. Since the number of trees on the n points is finite, the conclusion follows. To describe the assignment, consider an \mathcal{AB} -tree $\mathcal{T}=(\mathcal{A}\sqcup\mathcal{B},\mathcal{E})$. Removal of an edge e of \mathcal{T} splits the graph into exactly two components. Let $p_{\mathcal{T}}(e)$ be the number of vertices in \mathcal{A} lying in the component of $\mathcal{T}-e$ containing the \mathcal{A} -endpoint of e; since \mathcal{T} is a tree, $p_{\mathcal{T}}(e)$ counts the number of paths in $\mathcal{T}-e$ from the \mathcal{A} -endpoint of e to vertices in \mathcal{A} (including the one-vertex path). Define $f(\mathcal{T})=\sum_{e\in\mathcal{E}}p_{\mathcal{T}}(e)|e|$, where |e| is the Euclidean length of e. We claim that f strictly decreases under a transformation. To prove this, let \mathcal{T}' be obtained from \mathcal{T} by a transformation involving the polyline $A_1B_1A_2B_2$; that is, A_1 and A_2 are in \mathcal{A} , B_1 and B_2 are in \mathcal{B} , $A_1B_1 + A_2B_2 > A_1B_2 + A_2B_1$, and $\mathcal{T}' = \mathcal{T} - A_1B_1 + A_1B_2$. It is readily checked that $p_{\mathcal{T}'}(e) = p_{\mathcal{T}}(e)$ for every edge e of \mathcal{T} different from A_1B_1 , A_2B_1 and A_2B_2 , $p_{\mathcal{T}'}(A_1B_2) = p_{\mathcal{T}}(A_1B_1)$, $p_{\mathcal{T}'}(A_2B_1) = p_{\mathcal{T}}(A_2B_1) + p_{\mathcal{T}}(A_1B_1)$, and $p_{\mathcal{T}'}(A_2Bb_2) = p_{\mathcal{T}}(A_2B_2) - p_{\mathcal{T}}(A_1B_1)$. Consequently, $$f(\mathcal{T}') - f(\mathcal{T}) = p_{\mathcal{T}'}(A_1 B_2) \cdot A_1 B_2 + (p_{\mathcal{T}'}(A_2 B_1) - p_{\mathcal{T}}(A_2 B_1)) \cdot A_2 B_1 + (p_{\mathcal{T}'}(A_2 B_2) - p_{\mathcal{T}}(A_2 B_2)) \cdot A_2 B_2 - p_{\mathcal{T}}(A_1 B_1) \cdot A_1 B_1$$ $$= p_{\mathcal{T}}(A_1 B_1) (A_1 B_2 + A_2 B_1 - A_2 B_2 - A_1 B_1) < 0.$$ **Remarks.** (1) The solution above does not involve the geometric structure of the configurations, so the conclusion still holds if the Euclidean length (distance) is replaced by any real-valued function on $\mathcal{A} \times \mathcal{B}$. (2) There are infinitely many strict semi-invariants that can be used to establish the conclusion, as we are presently going to show. The idea is to devise a non-strict real-valued semi-invariant f_A for each A in A (i.e., f_A does not increase under a transformation) such that $\sum_{A\in\mathcal{A}} f_A = f$. It then follows that any linear combination of the f_A with positive coefficients is a strict semi-invariant. To describe f_A , where A is a fixed vertex in \mathcal{A} , let \mathcal{T} be an \mathcal{AB} -tree. Since \mathcal{T} is a tree, by orienting all paths in \mathcal{T} with an endpoint at A away from A, every edge of \mathcal{T} comes out with a unique orientation so that the in-degree of every vertex of \mathcal{T} other than A is 1. Define $f_A(\mathcal{T})$ to be the sum of the Euclidean lengths of all out-going edges from \mathcal{A} . It can be shown that f_A does not increase under a transformation, and it strictly decreases if the paths from A to each of A_1 , A_2 , B_1 , B_2 all pass through A_1 — i.e., of these four vertices, A_1 is combinatorially nearest to A. In particular, this is the case if $A_1 = A$, i.e., the edge-switch in the transformation occurs at A. It is not hard to prove that $\sum_{A \in \mathcal{A}} f_A(\mathcal{T}) = f(\mathcal{T})$. The conclusion of the problem can also be established by resorting to a single carefully chosen f_A . Suppose, if possible, that the process is infinite, so some tree \mathcal{T} occurs (at least) twice. Let A be the vertex in A at which the edge-switch occurs in the transformation of the first occurrence of \mathcal{T} . By the preceding paragraph, consideration of f_A shows that \mathcal{T} can never occur again. (3) Recall that the degree of any vertex in \mathcal{A} is invariant under a transformation, so the linear combination $\sum_{A \in \mathcal{A}} (\deg A - 1) f_A$ is a strict semi-invariant for \mathcal{AB} -trees \mathcal{T} whose vertices in \mathcal{A} all have degrees exceeding 1. Up to a factor, this semi-invariant can alternatively, but equivalently be described as follows. Fix a vertex * and assign each vertex X a number g(X) so that g(*) = 0, and g(A) - g(B) = AB for every A in \mathcal{A} and every B in \mathcal{B} joined by an edge. Next, let $\beta(\mathcal{T}) = \frac{1}{|\mathcal{B}|} \sum_{B \in \mathcal{B}} g(B)$, let $\alpha(\mathcal{T}) = \frac{1}{|\mathcal{E}| - |\mathcal{A}|} \sum_{A \in \mathcal{A}} (\deg A - 1) g(A)$, where \mathcal{E} is the edge-set of \mathcal{T} , and set $\mu(\mathcal{T}) = \beta(\mathcal{T}) - \alpha(\mathcal{T})$. It can be shown that μ strictly decreases under a transformation; in fact, μ and $\sum_{A \in \mathcal{A}} (\deg A - 1) f_A$ are proportional to one another.