
The 8th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Let x and y be positive real numbers such that x+y2016 ≥ 1. Prove that x2016+y >
1− 1/100.

Solution. If x ≥ 1− 1/(100 · 2016), then

x2016 ≥
(

1− 1

100 · 2016

)2016

> 1− 2016 · 1

100 · 2016
= 1− 1

100

by Bernoulli’s inequality, whence the conclusion.
If x < 1 − 1/(100 · 2016), then y ≥ (1 − x)1/2016 > (100 · 2016)−1/2016, and it is sufficient to

show that the latter is greater than 1− 1/100 = 99/100; alternatively, but equivalently, that(
1 +

1

99

)2016

> 100 · 2016.

To establish the latter, refer again to Bernoulli’s inequality to write(
1 +

1

99

)2016

>

(
1 +

1

99

)99·20
>

(
1 + 99 · 1

99

)20

= 220 > 100 · 2016.

Remarks. (1) Although the constant 1/100 is not sharp, it cannot be replaced by the smaller
constant 1/400, as the values x = 1− 1/210 and y = 1− 1/380 show.

(2) It is natural to ask whether xn +y ≥ 1−1/k, whenever x and y are positive real numbers

such that x + yn ≥ 1, and k and n are large. Using the inequality
(

1 + 1
k−1

)k
> e, it can be

shown along the lines in the solution that this is indeed the case if k ≤ n
2 logn(1 + o(1)). It seems

that this estimate differs from the best one by a constant factor.

Problem 5. A convex hexagon A1B1A2B2A3B3 is inscribed in a circle Ω of radius R. The
diagonals A1B2, A2B3, and A3B1 concur at X. For i = 1, 2, 3, let ωi be the circle tangent to the
segments XAi and XBi, and to the arc AiBi of Ω not containing other vertices of the hexagon;
let ri be the radius of ωi.

(a) Prove that R ≥ r1 + r2 + r3.

(b) If R = r1 + r2 + r3, prove that the six points where the circles ωi touch the diagonals
A1B2, A2B3, A3B1 are concyclic.

Solution. (a) Let `1 be the tangent to Ω parallel to A2B3, lying on the same side of A2B3 as
ω1. The tangents `2 and `3 are defined similarly. The lines `1 and `2, `2 and `3, `3 and `1 meet
at C3, C1, C2, respectively (see Fig. 1). Finally, the line C2C3 meets the rays XA1 and XB1

emanating from X at S1 and T1, respectively; the points S2, T2, and S3, T3 are defined similarly.
Each of the triangles ∆1 = 4XS1T1, ∆2 = 4T2XS2, and ∆3 = 4S3T3X is similar to

∆ = 4C1C2C3, since their corresponding sides are parallel. Let ki be the ratio of similitude of
∆i and ∆ (e.g., k1 = XS1/C1C2 and the like). Since S1X = C2T3 and XT2 = S3C1, it follows
that k1 + k2 + k3 = 1, so, if ρi is the inradius of ∆i, then ρ1 + ρ2 + ρ3 = R.

Finally, notice that ωi is interior to ∆i, so ri ≤ ρi, and the conclusion follows by the preceding.
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(b) By part (a), the equality R = r1 + r2 + r3 holds if and only if ri = ρi for all i, which implies
in turn that ωi is the incircle of ∆i. Let Ki, Li, Mi be the points where ωi touches the sides
XSi, XTi, SiTi, respectively. We claim that the six points Ki and Li (i = 1, 2, 3) are equidistant
from X.

Clearly, XKi = XLi, and we are to prove that XK2 = XL1 and XK3 = XL2. By similarity,
∠T1M1L1 = ∠C3M1M2 and ∠S2M2K2 = ∠C3M2M1, so the points M1, M2, L1, K2 are collinear.
Consequently, ∠XK2L1 = ∠C3M1M2 = ∠C3M2M1 = ∠XL1K2, so XK2 = XL1. Similarly,
XK3 = XL2.

Remark. Under the assumption in part (b), the point Mi is the centre of a homothety mapping
ωi to Ω. Since this homothety maps X to Ci, the points Mi, Ci, X are collinear, so X is the
Gergonne point of the triangle C1C2C3. This condition is in fact equivalent to R = r1 + r2 + r3.

Problem 6. A set of n points in Euclidean 3-dimensional space, no four of which are coplanar,
is partitioned into two subsets A and B. An AB-tree is a configuration of n− 1 segments, each of
which has an endpoint in A and the other in B, and such that no segments form a closed polyline.
An AB-tree is transformed into another as follows: choose three distinct segments A1B1, B1A2

and A2B2 in the AB-tree such that A1 is in A and A1B1 + A2B2 > A1B2 + A2B1, and remove
the segment A1B1 to replace it by the segment A1B2. Given any AB-tree, prove that every
sequence of successive transformations comes to an end (no further transformation is possible)
after finitely many steps.

Solution. The configurations of segments under consideration are all bipartite geometric trees
on the points n whose vertex-parts are A and B, and transforming one into another preserves
the degree of any vertex in A, but not necessarily that of a vertex in B.

The idea is to devise a strict semi-invariant of the process, i.e., assign each AB-tree a real
number strictly decreasing under a transformation. Since the number of trees on the n points is
finite, the conclusion follows.

To describe the assignment, consider an AB-tree T = (A t B, E). Removal of an edge e of
T splits the graph into exactly two components. Let pT (e) be the number of vertices in A lying
in the component of T − e containing the A-endpoint of e; since T is a tree, pT (e) counts the
number of paths in T − e from the A-endpoint of e to vertices in A (including the one-vertex
path). Define f(T ) =

∑
e∈E pT (e)|e|, where |e| is the Euclidean length of e.

We claim that f strictly decreases under a transformation. To prove this, let T ′ be obtained
from T by a transformation involving the polyline A1B1A2B2; that is, A1 and A2 are in A, B1
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and B2 are in B, A1B1 +A2B2 > A1B2 +A2B1, and T ′ = T −A1B1 +A1B2. It is readily checked
that pT ′(e) = pT (e) for every edge e of T different from A1B1, A2B1 and A2B2, pT ′(A1B2) =
pT (A1B1), pT ′(A2B1) = pT (A2B1) + pT (A1B1), and pT ′(A2Bb2) = pT (A2B2)− pT (A1B1). Con-
sequently,

f(T ′)− f(T ) = pT ′(A1B2) ·A1B2 + (pT ′(A2B1)− pT (A2B1)) ·A2B1+

(pT ′(A2B2)− pT (A2B2)) ·A2B2 − pT (A1B1) ·A1B1

= pT (A1B1) (A1B2 +A2B1 −A2B2 −A1B1) < 0.

Remarks. (1) The solution above does not involve the geometric structure of the configurations,
so the conclusion still holds if the Euclidean length (distance) is replaced by any real-valued
function on A× B.

(2) There are infinitely many strict semi-invariants that can be used to establish the con-
clusion, as we are presently going to show. The idea is to devise a non-strict real-valued semi-
invariant fA for each A in A (i.e., fA does not increase under a transformation) such that∑

A∈A fA = f . It then follows that any linear combination of the fA with positive coefficients is
a strict semi-invariant.

To describe fA, where A is a fixed vertex in A, let T be an AB-tree. Since T is a tree, by
orienting all paths in T with an endpoint at A away from A, every edge of T comes out with a
unique orientation so that the in-degree of every vertex of T other than A is 1. Define fA(T ) to
be the sum of the Euclidean lengths of all out-going edges from A. It can be shown that fA does
not increase under a transformation, and it strictly decreases if the paths from A to each of A1,
A2, B1, B2 all pass through A1 — i.e., of these four vertices, A1 is combinatorially nearest to A.
In particular, this is the case if A1 = A, i.e., the edge-switch in the transformation occurs at A.
It is not hard to prove that

∑
A∈A fA(T ) = f(T ).

The conclusion of the problem can also be established by resorting to a single carefully chosen
fA. Suppose, if possible, that the process is infinite, so some tree T occurs (at least) twice. Let A
be the vertex in A at which the edge-switch occurs in the transformation of the first occurrence
of T . By the preceding paragraph, consideration of fA shows that T can never occur again.

(3) Recall that the degree of any vertex in A is invariant under a transformation, so the
linear combination

∑
A∈A(degA − 1)fA is a strict semi-invariant for AB-trees T whose vertices

in A all have degrees exceeding 1. Up to a factor, this semi-invariant can alternatively, but
equivalently be described as follows. Fix a vertex ∗ and assign each vertex X a number g(X) so
that g(∗) = 0, and g(A)−g(B) = AB for every A in A and every B in B joined by an edge. Next,
let β(T ) = 1

|B|
∑

B∈B g(B), let α(T ) = 1
|E|−|A|

∑
A∈A(degA−1)g(A), where E is the edge-set of T ,

and set µ(T ) = β(T )− α(T ). It can be shown that µ strictly decreases under a transformation;
in fact, µ and

∑
A∈A(degA− 1)fA are proportional to one another.
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