The $8^{\text {th }}$ Romanian Master of Mathematics Competition

Day 1: Friday, February 26, 2016, Bucharest

Language: English

Problem 1. Let $A B C$ be a triangle and let D be a point on the segment $B C, D \neq B$ and $D \neq C$. The circle $A B D$ meets the segment $A C$ again at an interior point E. The circle $A C D$ meets the segment $A B$ again at an interior point F. Let A^{\prime} be the reflection of A in the line $B C$. The lines $A^{\prime} C$ and $D E$ meet at P, and the lines $A^{\prime} B$ and $D F$ meet at Q. Prove that the lines $A D, B P$ and $C Q$ are concurrent (or all parallel).

Problem 2. Given positive integers m and $n \geq m$, determine the largest number of dominoes (1×2 or 2×1 rectangles) that can be placed on a rectangular board with m rows and $2 n$ columns consisting of cells $(1 \times 1$ squares) so that:
(i) each domino covers exactly two adjacent cells of the board;
(ii) no two dominoes overlap;
(iii) no two form a 2×2 square; and
(iv) the bottom row of the board is completely covered by n dominoes.

Problem 3. A cubic sequence is a sequence of integers given by $a_{n}=$ $n^{3}+b n^{2}+c n+d$, where b, c and d are integer constants and n ranges over all integers, including negative integers.
(a) Show that there exists a cubic sequence such that the only terms of the sequence which are squares of integers are a_{2015} and a_{2016}.
(b) Determine the possible values of $a_{2015} \cdot a_{2016}$ for a cubic sequence satisfying the condition in part (a).

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

