The $8^{\text {th }}$ Romanian Master of Mathematics Competition

Day 2: Saturday, February 27, 2016, Bucharest

Language: English

Problem 4. Let x and y be positive real numbers such that $x+y^{2016} \geq 1$. Prove that $x^{2016}+y>1-1 / 100$.

Problem 5. A convex hexagon $A_{1} B_{1} A_{2} B_{2} A_{3} B_{3}$ is inscribed in a circle Ω of radius R. The diagonals $A_{1} B_{2}, A_{2} B_{3}$, and $A_{3} B_{1}$ concur at X. For $i=1,2,3$, let ω_{i} be the circle tangent to the segments $X A_{i}$ and $X B_{i}$, and to the arc $A_{i} B_{i}$ of Ω not containing other vertices of the hexagon; let r_{i} be the radius of ω_{i}.
(a) Prove that $R \geq r_{1}+r_{2}+r_{3}$.
(b) If $R=r_{1}+r_{2}+r_{3}$, prove that the six points where the circles ω_{i} touch the diagonals $A_{1} B_{2}, A_{2} B_{3}, A_{3} B_{1}$ are concyclic.

Problem 6. A set of n points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned into two subsets \mathcal{A} and \mathcal{B}. An $\mathcal{A B}$ tree is a configuration of $n-1$ segments, each of which has an endpoint in \mathcal{A} and the other in \mathcal{B}, and such that no segments form a closed polyline. An $\mathcal{A B}$-tree is transformed into another as follows: choose three distinct segments $A_{1} B_{1}, B_{1} A_{2}$ and $A_{2} B_{2}$ in the $\mathcal{A B}$-tree such that A_{1} is in \mathcal{A} and $A_{1} B_{1}+A_{2} B_{2}>A_{1} B_{2}+A_{2} B_{1}$, and remove the segment $A_{1} B_{1}$ to replace it by the segment $A_{1} B_{2}$. Given any $\mathcal{A B}$-tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

