S.-T. Yau College Student Mathematics Contests 2016

Algebra and Number Theory Individual

This test has 5 problems and is worth 100 points. Carefully justify your answers.
Problem 1 (20 points). Let E be a linear space over \mathbb{R}, of finite dimension $n \geq 2$, equipped with a positive definite symmetric bilinear form $\langle\cdot, \cdot\rangle$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be a basis of E. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the dual basis, that is,

$$
\left\langle u_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

for all $i, j=1,2, \ldots, n$.
(a) (8 points) Assume that $\left\langle u_{i}, u_{j}\right\rangle \leq 0$ for all $1 \leq i<j \leq n$. Show that there is an orthogonal basis $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ of E such that u_{i}^{\prime} is a non-negative linear combination of $u_{1}, u_{2}, \ldots, u_{i}$, for all $i=1,2, \ldots, n$.
(b) (6 points) With the same assumption as in Part (a), show that $\left\langle v_{i}, v_{j}\right\rangle \geq 0$ for all $1 \leq i<j \leq n$.
(c) (6 points) Assume that $n \geq 3$. Show that the condition $\left\langle u_{i}, u_{j}\right\rangle \geq 0$ for all $1 \leq i<j \leq n$ does not imply that $\left\langle v_{i}, v_{j}\right\rangle \leq 0$ for all $1 \leq i<j \leq n$.

Problem 2 (20 points). Let $d \geq 1$ and $n \geq 1$ be integers.
(a) (5 points) Show that there are only finitely many subgroups $G \subseteq \mathbb{Z}^{d}$ of index n. Let $f_{d}(n)$ denote the number of such subgroups.
(b) (5 points) Let $g_{d}(n)$ denote the number of subgroups $H \subseteq \mathbb{Z}^{d}$ of index n such that the quotient group is cyclic. Show that $f_{d}(m n)=f_{d}(m) f_{d}(n)$ and $g_{d}(m n)=g_{d}(m) g_{d}(n)$ for coprime positive integers m and n.
(c) (5 points) Compute $g_{d}\left(p^{r}\right)$ for every prime power $p^{r}, r \geq 1$.
(d) (5 points) Compute $f_{2}(20)$.

Problem 3 (20 points). Let A be a complex $m \times m$ matrix. Assume that there exists an integer $N \geq 0$ such that $t_{n}=\operatorname{tr}\left(A^{n}\right)$ is an algebraic integer for all $n \geq N$. The goal of this problem is to show that the eigenvalues a_{1}, \ldots, a_{m} of A are algebraic integers.
(a) (10 points) Show that there exist algebraic numbers $b_{i j} \in \mathbb{C}, 1 \leq i, j \leq m$ such that

$$
a_{i}^{n}=\sum_{j=1}^{m} b_{i j} t_{n+j-1}
$$

for all $n \geq 0$ and all $1 \leq i \leq m$. In particular, a_{1}, \ldots, a_{m} are algebraic numbers.
(b) (8 points) Let R be the ring of all algebraic integers in \mathbb{C} and let K be the field of all algebraic numbers in \mathbb{C}. Show that for $a \in K$, if $R[a]$ is contained in a finitely-generated R-submodule of K, then $a \in R$.
(c) (2 points) Conclude that a_{1}, \ldots, a_{m} are algebraic integers.

Problem 4 (20 points). Let E be a Euclidean plane. For each line l in E, write $s_{l} \in \operatorname{Iso}(E)$ for the reflection with respect to l, where $\operatorname{Iso}(E)$ denotes the group of distance-preserving bijections from E to itself.
(a) (6 points) Let l_{1} and l_{2} be two distinct lines in E. Find the necessary and sufficient condition that $s_{l_{1}}$ and $s_{l_{2}}$ generate a finite group.
(b) (7 points) Let l_{1}, l_{2} and l_{3} be three pairwise distinct lines in E. Assume that $s_{l_{1}}, s_{l_{2}}$ and $s_{l_{3}}$ generate a finite group. Show that l_{1}, l_{2}, l_{3} intersect at a point.
(c) (7 points) Let G be a finite subgroup of $\operatorname{Iso}(E)$ generated by reflections. Show that G is generated by at most two reflections.

Problem 5 (20 points). Let G be a finite group of order $2^{n} m$ where $n \geq 1$ and m is an odd integer. Assume that G has an element of order 2^{n}. The goal of this problem is to show that G has a normal subgroup of order m.
(a) (5 points) Show that if M is a normal subgroup of G of order m, then M is the only subgroup of G of order m.
(b) (5 points) Let N be a normal subgroup of G and let P be a 2-Sylow subgroup of G. Show that $P \cap N$ is a 2-Sylow subgroup of N.
(c) (5 points) Show that the homomorphism $G \rightarrow\{ \pm 1\}$ carrying g to $\operatorname{sgn}\left(l_{g}\right)$ is surjective. Here $\operatorname{sgn}\left(l_{g}\right)$ denotes the sign of the permutation $l_{g}: G \rightarrow G$ given by left multiplication by g.
(d) (5 points) Deduce by induction on n that G has a normal subgroup of order m.

