Analysis and Differential Equations Individual

Please solve 5 out of the following 6 problems.

1. Suppose that F is continuous on $[a, b], F^{\prime}(x)$ exists for every $x \in(a, b), F^{\prime}(x)$ is integrable. Prove that F is absolutely continuous and

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x
$$

2. Suppose that f is integrable on \mathbf{R}^{n}, let $K_{\delta}(x)=\delta^{-\frac{n}{2}} e^{\frac{-\pi|x|^{2}}{\delta}}$ for each $\delta>0$. Prove that the convolution

$$
\left(f * K_{\delta}\right)(x)=\int_{\mathbf{R}^{n}} f(x-y) K_{\delta}(y) d y
$$

is integrable and $\left\|\left(f * K_{\delta}\right)-f\right\|_{L^{1}\left(\mathbf{R}^{n}\right)} \rightarrow 0$, as $\delta \rightarrow 0$.
3. Prove that a bounded function on interval $I=[a, b]$ is Riemann integrable if and only if its set of discontinuities has measure zero. You may prove this by the following steps.

Define $I(c, r)=(c-r, c+r), \operatorname{osc}(f, c, r)=\sup _{x, y \in J \cap I(c, r)}|f(x)-f(y)|, \operatorname{osc}(f, c)=$ $\lim _{r \rightarrow 0} \operatorname{osc}(f, r, c)$.

1) f is continuous at $c \in J$ if and only if $\operatorname{osc}(f, c)=0$.
2) For arbitrary $\epsilon>0,\{c \in J \mid \operatorname{osc}(f, c) \geq \epsilon\}$ is compact.
3) If the set of discontinuities of f has measure 0 , then f is Riemann integrable.
4. 5) Let f be the Rukowski map: $w=\frac{1}{2}\left(z+\frac{1}{z}\right)$. Show that it maps $\{z \in \overline{\mathbf{C}}||z|>1\}$ to $\overline{\mathbf{C}} /[-1,1], \overline{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$.
2) Compute the integral:

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}-1} d x
$$

5. Let f be a doubly periodic meromorphic function over the complex plane, i.e. $f(z+$ 1) $=f(z), f(z+i)=f(z), z \in \mathbf{C}$, prove that the number of zeros and the number of poles are equal.
6. Let A be a bounded self-adjoint operator over a complex Hilbert space. Prove that the spectrum of A is a bounded closed subset of the real line \mathbf{R}.
