Probability and Statistics
 Individual (5 problems)

Problem 1. A random walker moves on the lattice \mathbb{Z}^{2} according to the following rule: in the first step it moves to one of its neighbors with probability $1 / 4$, and then in step $n>1$ it moves to one of the neighbors that it didn't visit in the step $n-1$ with equal probability. Let T be the time when the random walker steps on a site that it already visited. Please show that the expectation of T is less than 35 .

Problem 2. Let X be a $N \times N$ random matrix with i.i.d. random entries, and

$$
\mathbb{P}\left(X_{11}=1\right)=\mathbb{P}\left(X_{11}=-1\right)=1 / 2
$$

Define

$$
\|X\|_{o p}=\sup _{\mathbf{v} \in \mathbb{C}^{N}:\|\mathbf{v}\|_{2}=1}\|X \mathbf{v}\|_{2}
$$

Please show that for any fixed $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\|X\|_{o p} \geq N^{1 / 2+\delta}\right)=0
$$

Hint: $\|X\|_{o p}^{2} \leq \operatorname{tr}|X|^{2}$
Problem 3. Suppose that 2016 balls are put into 2016 boxes with each ball independently being put into box i with probability $\frac{1}{3 \times 1008}$ for $i \leq 1008$ and $\frac{2}{3 \times 1008}$ for $i>1008$. Let T be the number of boxes containing exactly 2 balls. Please find the variance of T.

Problem 4. Let $b>a>0$ be real numbers. Let X be a random variable taking values in $[a, b]$, and let $Y=\frac{1}{X}$. Determine the set of all possible values of $\mathbb{E}(X) \times \mathbb{E}(Y)$.

Problem 5. Let X_{1}, X_{2}, \ldots be independent and identically distributed real-valued random variables such that $\mathbb{E}\left(X_{1}\right)=-1$. Let $S_{n}=X_{1}+\cdots+X_{n}$ for all $n \geq 1$, and let T be the total number of $n \geq 1$ satisfying $S_{n} \geq 0$. Compute $P(T=\infty)$.

