
S.-T. Yau College Student Mathematics Contests 2016

Analysis and Differential Equations
Team

Please solve 5 out of the following 6 problems.

1. Let D ⊂ Rd, d ≥ 2 be a compact convex set with smooth boundary ∂D so that the
origin belongs to the interior of D. For every x ∈ ∂D let α(x) ∈ (0,∞) be the angle
between the position vector x of the outer normal vector n(x). Let ωd be the surface
area of the unit sphere in Rd. Compute:

1

ωd

∫
∂D

cos(α(x))

|x|d−1
dσ(x)

where dσ denotes the surface measure on ∂D.

2. Let p > 0 and suppose fn, f ∈ Lp[0, 1] and ||fn−f ||p = (
∫ 1

0
|fn(x)−f(x)|pdx)

1
p → 0

as n → ∞.
a) Show that for every ϵ > 0,

lim
n→∞

m({x ∈ [0, 1]||fn(x)− f(x)| > ϵ}) = 0.

Here m is the Lebesgue measure.
b) Show that there exists a subsequence fnj

such that fnj
(x) → f(x) for almost

every x ∈ [0, 1].

3. 1) Let f be a holomorphic function on the unit disk D = {z ∈ C||z| < 1} except 0.
Assume f ∈ L2(D), i.e.

∫
D
|f(z)|2dzdz̄ < ∞, then 0 is a removable singularity.

2) Let fn be a sequence of holomorphic functions over a domain Ω ⊂ C converging
to f uniformly on any compact subset of Ω, does the sequence of its derivatives f

′
n also

have this property?

4. Consider the torus T 2 = C/Λ,Λ = {m+ in|m,n ∈ Z}, i.e. z1, z2 ∈ C are equivalent
if and only if there are integers m,n such that z2 = z1 +m+ in and T 2 are the space
of equivalent classes. Show that the group of holomorphic automorphisms of T 2 is
SL(2,Z) of 2 x 2 integer matrices of determinant 1.

5. Let {en} be an orth-normal basis of l2 of square integrable functions over a circle.
Let A : l2 → l2, Ae1 = 0, Aen = en−1

n−1
, n > 1 be a linear operator. Show that A is an

compact operator and A has no eigenvectors. What are the spectrum of A?

6. If M = [0, 1] is the unit interval, the heat kernel on M can be written

p(x, y, t) = Σkϕk(x)ϕk(y)e
λkt,

where {λk} is an enumeration of the eigenvalues of the ∆ = d2

dx2 on M and {ϕk} are
the corresponding eigenfunctions which vanish on ∂M .
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i) Calculate {λk} and the corresponding eigenfunctions.
ii) Prove that |p(x, y, t)| ≤ Ct−1/2, for all x, y, and 0 < t < 1.
iii) What is the exponential rate of decay of p(x, y, t) as t → ∞, i.e. compute:

lim
t→∞

log(p(x, y, t)).



S.-T. Yau College Student Mathematics Contests 2016

Probability and Statistics

Team (5 problems)

Problem 1. For a random walk process on the complete infinite binary tree (see Fig
1.) starting from root (i.e. level 0), we assume that the object moves to the neighbor
nodes with equal probability. Let Xn denote the level number at time = n. Please
prove that

EXn ≤ 1/3n + 4/3

Fig 1.

Problem 2. The goal is to show the concentration inequality for the median of mean
estimator. We divide the problem into three simple steps.

1. Let X be a random variable with EX = µ < ∞ and Var(X) = σ2 < ∞. Suppose
we have m i.i.d. random samples {Xi}m

i=1. Let µ̂m = 1
m

∑m
i=1 Xi from X. Show

that

P
(
|µ̂m − µ| ≥ 2σ

√
1

m

)
≤ 1

4
.

2. Given k i.i.d. Bernoulli random variables {Bj}k
j=1 with EBj = p < 1

2
. Use the

moment generating function of Bj, i.e., E(exp(tBj)), to show that

P
(1

k

k∑
j=1

Bj ≥
1

2

)
≤ (4p(1− p))

k
2 .

3. Suppose we have n i.i.d. random samples {Xi}n
i=1 from a population with mean

µ and variance σ2. For any positive integer k, we randomly and uniformly divide
all the samples into k subsamples, each having size m = n/k (for simplicity,
we assume n is always divisible by k). Let µ̂j be the sample average of the jth



subsample and m̃ be the median of {µ̂j}k
j=1. Apply the previous two results to

show that

P
(
|m̃− µ| ≥ 2σ

√
k

n

)
≤

(√3

2

)k
.

Hint: Consider the Bernoulli random variable Bj = 1{|µ̂j − µ| ≥ 2σ
√

k
n
} for

j = 1, ..., k.

Problem 3. (a) Let N ≥ 2 be an integer, and let X be a random variable taking
values in {0, 1, 2, . . .} such that P{X ≡ k (mod N)} = 1

N
for all k ∈ {0, 1, . . . , N − 1}.

Compute E(ei(2πm)X/N) (with i =
√
−1) for all integers m ≥ 1.

(b) A game for N players (numbered as 0, 1, 2, . . ., N−1) is as follows: Each player
independently shows a random number of fingers (uniformly chosen from {0, 1, 2, 3, 4, 5});
if S denotes the total number of fingers shown, then the player number S mod N is de-
clared to be the winner of the game.

Find all N such that the players have equal chance to win the game.

Problem 4. Let X1, X2, . . . be independent and identically distributed real-valued
random variables. Prove or disprove: If lim supn→∞

|Xn|
n

≤ 1 almost surely, then∑∞
n=1 P (|Xn| ≥ n) < ∞.

Problem 5. Choose, at random, 2016 points on the circle x2 + y2 = 1. Interpret them
as cuts that divide the circle into 2016 arcs. Compute the expected length of the arc
that contains the point (1, 0). How about the variance.
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Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Show that CP2n does not cover any manifold except itself.

2. Let X be a topological space and p ∈ X. The reduced suspension ΣX of X is the
space obtained from X × [0, 1] by contracting (X × {0, 1}) ∪ ({p} × [0, 1]) to a point.
Describe the relation between the homology groups of X and ΣX.

3. State and prove the Frobenius Theorem on a differentiable manifold.

4. Show that all geodesics on the sphere Sn are precisely the great circles.

5. Let M be an n-dimensional Riemannian manifold. Denote by R and KM the cur-
vature tensor and sectional curvature of M . If a ≤ KM ≤ b at a point x ∈ M , then, at
this point,

R(e1, e2, e3, e4) ≤
2

3
(b− a)

for all orthonormal four-frames {e1, e2, e3, e4} ⊂ TxM .

6. Let M be a closed minimal hypersurface with constant scalar curvature in Sn+1.
Denote by S the squared length of the second fundamental form of M . Show that
S = 0, or S ≥ n.
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S.-T. Yau College Student Mathematics Contests 2016

Algebra and Number Theory
Team

This test has 5 problems and is worth 100 points. Carefully justify your answers.

Problem 1 (20 points). Find all real orthogonal 2×2 matrices k with the following
property: There is an upper triangular 2× 2 real matrix b with all diagonal entries
being positive numbers such that kb is a positive definite symmetric matrix.

Problem 2 (20 points). For x ∈ Z and k ≥ 0, define the binomial coefficients(
x

k

)
= x(x− 1) · · · (x− k + 1)

k! ,

(
x

0

)
= 1.

(a) (6 points) Show that x ∈ Z =⇒
(

x
k

)
∈ Z.

(b) (6 points) Show that every function f : Z≥0 → Z can be expressed as f(x) =∑∞
k=0 ak

(
x
k

)
, where ak ∈ Z are uniquely determined by f .

(c) (8 points) Define

φk(x) =
(
x+ bk/2c

k

)
.

Show that every function f : Z→ Z can be expressed as f(x) = ∑∞
k=0 akφk(x),

where ak ∈ Z are uniquely determined by f .

Problem 3 (20 points). Let K be the splitting field of the polynomial

x4 − x2 − 1.

(a) (10 points) Show that the Galois group of K over Q is isomorphic to the
dihedral group D4. Here we adopt the convention that D4 is the group of
symmetries of a square and has order 8.

(b) (10 points) Determine the lattice of subfields of K: Find all subfields of K
and describe the partial order induced by inclusion.

Problem 4 (20 points). Let G be a (not necessarily finite) group and let F be a
field of characteristic 6= 2. Let V 6= 0 be an indecomposable finite-dimensional
linear representation of G over F . Let R = EndF (V )G be the ring of G-equivariant
endomorphisms of V .
(a) (5 points) Prove the following form of Fitting’s lemma: Every element of R is

either invertible or nilpotent.
(b) (5 points) Deduce that the set I ⊆ R of non-invertible elements is a two-sided

ideal and the quotient R/I is a division algebra over F .
(c) (5 points) We say that V is orthogonal if there exists a G-invariant nonde-

generate symmetric bilinear form on V . We say that V is symplectic if there
exists a G-invariant nondegenerate alternating bilinear form on V . Deduce
that if there exists a G-invariant nondegenerate bilinear form on V , then V is
orthogonal or symplectic.
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(d) (5 points) Assume that F is algebraically closed. Deduce from (b) that V
cannot be both orthogonal and symplectic.

Problem 5 (20 points).
(a) (5 points) Let G be a finite group. Let x1, . . . , xh be representatives of the con-

jugacy classes of G. Let ni = #CentG(xi) be the cardinality of the centralizer
of xi. Prove the identity

1 =
h∑

i=1

1
ni

.

(b) (10 points) Deduce that for any integer h ≥ 1, there exist only finitely many
isomorphism classes of finite groups with exactly h conjugacy classes.

(c) (5 points) Find all the finite groups with exactly 3 conjugacy classes.
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S.-T. Yau College Student Mathematics Contests 2016

Applied Math. and Computational Math.
Team (5 problems)

Problem 1. For solving the following partial differential equation

(1) ut + ux = 0, −∞ ≤ x ≤ ∞
with compactly supported initial condition, we consider the following one-step, three-
point scheme on a uniform mesh xj = j∆x with spatial mesh size ∆x:

(2) un+1
j = aun

j + bun
j−1 + cun

j−2, j = · · · ,−1, 0, 1, · · ·
where a, b, c are constants which may depend on the mesh ratio λ = ∆t

∆x
. Here ∆t is

the time step, and un
j approximates the exact solution at u(xj, t

n) with tn = n∆t.

(1) Find the constants a, b, c such that the scheme (2) is second order accurate.
(2) Find the CFL number λ0 such that the scheme (2), with the constants deter-

mined by the step above, is stable in L2 under the time step restriction λ ≤ λ0.
(3) If the PDE (1) is defined on (0,∞) with an initial condition compactly sup-

ported in (0,∞) and a boundary condition u(0, t) = g(t), how would you modify
the scheme (2) so that it can be applied? Can you prove the stability and ac-
curacy of your modified scheme?

Problem 2. Inverse problem. Answer the famous Mark Kac’s equation: “can you
hear the shape of drum?” for the special case.

Consider the one-dimensional oscillator ẍ = −u′(x) with symmetric potential u(−x) =
u(x), u(0) = u′(0) = 0, u′(x) > 0 for x > 0, limx→∞ u(x) = ∞. Denote the inverse
function of y = u(x), x ≥ 0 as x = u−1(y) = φ(y).

(a) For any solution x(t), show there is a conservation of energy

ẋ2(t)

2
+ u(x(t)) ≡ e

where e is a constant.
(b) For any energy e > 0, find a periodic solution with total energy e. Show that the

period is given by

P (e) = 2
√

2

∫ xmax

0

dx√
e− u(x)

, xmax = φ(e) > 0 .

(c) Show that

φ(z) =
1

2π
√

2

∫ z

0

P (e) de√
z − e

.

(d) In the case of iso-chronous P (e) ≡ 2π, show that φ(z) =
√

2z. Then you have
u(x) = 1

2
x2, x(t) = a cos(t) + b sin(t), the famous harmonic oscillator.
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Problem 3. The following statement informally means that if a system of homoge-
neous equations with integer coefficients has a nontrivial solution then it has an integer
solutions with reasonably small components. It is required in many applications.
Let A = (aij)

m,n
i,j=1 be an m× n matrix of rank r ≤ n− 1 with integer entries of size at

most H, that is,
|aij| ≤ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Prove that there is an integer non-zero vector x = (x1, . . . , xn) ∈ Zn such that Ax = 0
and

‖x‖∞ ≤ (2nH)n−1

where ‖x‖∞ = max1≤i≤n |xi|.

Problem 4. This problem considers an iterative scheme

xk+1 = xk + βkpk

for the linear system Ax = b, where A ∈ Rn×n is a given n×n non-singular matrix and
b ∈ Rn is a given vector. In the above scheme, xk denotes the approximate solution at
the k-th iteration, βk is a scalar and pk ∈ Rn is a search direction. If xk is given, the
above scheme will determine xk+1 so that the residual rk+1 := b−Axk+1 is the smallest
possible with respect to the 2-norm.

(1) Determine βk.
(2) Prove that the residual rk+1 is orthogonal to Apk with respect to the usual

inner-product.
(3) Prove that the residuals satisfy

‖rk+1‖ ≤ ‖rk‖ sin(α)

where α is the angle between rk and Apk, and ‖ · ‖ denotes the 2-norm.
(4) Assume that the inner product of rk and Apk is non-zero. Will the above scheme

always converge?
(5) Assume that A is positive definite. We take the search direction pk = rk. Show

that the above scheme converges for any initial guess x0.

Problem 5. Let f : Rn → R be convex and in C1. Suppose f has a local minimum
x∗.

(1) Must this local minimum x∗ be a global minimum?
(2) Consider the following backward gradient method: starting from any x0 ∈ Rn,

define
xk = xk−1 − t∇f(xk), k ≥ 1,

where t > 0 is a fixed step size. Do you need any condition on t to guarantee
{f(xk)} converge? Prove your convergence argument, if {f(xk)} converges.

(3) Suppose f is strongly convex, that is, ∃m > 0 such that 〈∇f(x)−∇f(y), x−y〉 ≥
m‖x− y‖2. Under this additional condition, show that {xk} converges.
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