Dec 282015
 

北京时间 27 日下午举行的硕士研究生初试的高等代数与解析几何

1. 在 \(\Bbb R^3\)上定义线性变换 \(A\), \(A\) 在自然基

\[\varepsilon_1=\left(\begin{array}{c}
1\\
0\\
0\end{array}\right),\varepsilon_2=\left(\begin{array}{c}
0\\
1\\
0\end{array}\right),\varepsilon_3=\left(\begin{array}{c}
0\\
0\\
1\end{array}\right)\]

下的矩阵为

\[\left(\begin{array}{ccc}
0&1&-1\\
0&0&1\\
0&0&0\end{array}\right)\]

求 \(\Bbb R^3\) 的一组基,使得 \(A\) 在这组基下具有 Jordan 标准型.

2. \(3\) 阶实矩阵 \(A\) 的特征多项式为 \(x^3-3x^2+4x-2\). 证明 \(A\) 不是对称阵, 也不是正交阵

3. 在所有 \(2\) 阶实方阵上, 定义二次型 \(f\colon X \rightarrow Tr(X^2)\). 求 \(f\) 的秩和符号差.

4. 设 \(V\) 是有限维线性空间, \(A\), \(B\)是 \(V\) 上线性变换满足下面条件
(1) \(AB=O\), 这里 \(O\) 是 \(0\) 变换;
(2) \(A\) 的任意不变子空间也是 \(B\) 的不变子空间;
(3) \(A^5+A^4+A^3+A^2+A=O\).
证明 \(BA=O\).

5. 设 \(V\) 是全体次数不超过 \(n\) 的实系数多项式组成的线性空间, 定义线性变换 \(A\colon f(x)\rightarrow f(1-x)\). 求 \(A\) 的特征值和对应的特征子空间.

6. 计算如下的行列式,各行底数为等差数列,各列底数也为如此,所有指数都是 \(50\):

\[\left|\begin{array}{ccccc}
1^{50}&2^{50}&3^{50}&\cdots &100^{50}\\
2^{50}&3^{50}&4^{50}&\cdots &101^{50}\\
\vdots&\vdots&\vdots&\vdots&\vdots\\
100^{50}&101^{50}&102^{50}&\cdots& 199^{50}\\\end{array}\right|\]

7.设 \(V\) 是复数域上有限维线性空间 \(A\) 是 \(V\) 上线性变换, \(A\) 在一组基下矩阵为 \(F\).
(1) 若 \(A\) 可对角化对任意 \(A\) 的不变子空间 \(U\), 存在 \(U\) 的一个补空间 \(W\) 是 \(A\) 的不变子空间;
(2) 若对任意 \(A\) 的不变子空间 \(U\),存在 \(U\) 的一个补空间 \(W\) 是 \(A\) 的不变子空间,证明 \(F\) 可对角化.

8. 平面上一个可逆仿射变换将一个圆映为椭圆(或圆).详细论证这一点

9. 平面 \(Ax+By+Cz+D=0\) 与双曲抛物面 \(2z=x^2-y^2\) 交于两条直线
证明 \(A^2-B^2-2CD=0\).

10. 正十二面体有12个面, 每个面为正五边形, 每个顶点连接3条棱. 有一个半径为 \(r\) 的球与它的各个面都相切, 有一个半径为 \(R\) 的中心在原点的球通过它的所有顶点. 求 \(\dfrac rR\).

 Leave a Reply

(required)

(required)

This site uses Akismet to reduce spam. Learn how your comment data is processed.