Aug 022020
 

定理 形如 $\dfrac pq$($p, q$ 都是素数)的全体有理数构成的集合在非负实数集
中稠密.

令 $0 < a < b$, $q$ 是一个素数.
那么,存在素数 $p$, 使得 $a < p/q\le b$ 当且仅当

$$\pi(bq) > \pi(aq)$$

这里 $\pi$ 是著名的素数个数的函数. 由素数定理, 当 $q\to\infty$ 时

$$\frac{\pi(bq)}{\pi(aq)}\sim\frac{b\ln(aq)}{a\ln(bq)}
=\frac{b(\ln q+\ln a)}{a(\ln q+\ln b)}\sim\frac ba>1.$$

对足够大的 $q$, $\pi(bq)/\pi(aq) > 1$ 为我们的目标.

或者,大同小异换汤不换药

设 $p_n$ 是第个素数。 主要的依据是 $p_n\sim n\ln p_n\sim n\ln n$, $n\to\infty$

事实上,根据素数定理,当 $n\to\infty$ 时

$$\pi(p_n)=n\sim\frac{p_n}{\ln p_n}, $$

$$\ln p_n\sim\ln\frac{p_n}{\ln p_n}\sim\ln n. $$

于是, $p_n\sim n\ln p_n\sim n\ln n$, $n\to\infty$

任意正实数$a$, 设 $n_k=[\dfrac{ak}{\ln k}]$, $m_k=[\dfrac{k}{\ln k}]$,

$$\lim_{k\to\infty}\frac{p_{n_k}}{p_{m_k}} = \lim_{k\to\infty}\frac{n_k\ln n_k}{m_k\ln m_k}=a$$

形如 $\dfrac pq$($p, q$ 都是素数)的全体有理数构成的集合在正实数集中稠密.

Jul 222020
 

Fermat 的平方和定理:

素数 \(p\equiv1\pmod4\),则 \(p\) 能表成两个整数 \( a, b\) 的平方和 \(p=a^2+b^2\).

是很精彩的定理,在堆垒数论很经典,我们很感兴趣。今天先来谈一点关于它的历史。

在历史上,最早考虑把正整数(不仅仅是素数)表示成两个正整数的平方和的可能性的问题的数学家是 Albert Girard. 他的论文发表在 1625 年。前面刚刚提到的Fermat 平方和定理有时候也称为 Girard 定理。至于 Fermat, 他在1640年12月25日给 Marin Mersenne 的一封信对这个定理给出了一个详尽的描述,同时也定出了把 \(p\) 的幂表成两个整数的平方和有多少种方法。

Albert Girard 小传

Albert Girard 1595 出生于法国的 Saint-Mihiel,1632年 12月8日去世在 Leiden, The Netherlands. 他是早期对代数基本定理有思考的数学家,他还给出了斐波那契数的一个归纳定义,他亦是最早在论文中使用\(\sin, \cos, \tan\) 表示三角函数。

Girard 还证明了球面三角形的面积对内角的依赖,这结论以他的名字命名。 他也弹琴,提到写过音乐方面的论述,但没有发表过。

根据 Charles Hutton 的研究,Girard 得出了方程的根的和与乘积,以及它们的幂的公式的系数。此外,他还是第一个发现了方程的根的幂的和的公式的人。

Funkhouser 研究了 Girard 使用对称函数来研究方程的工作在历史上的贡献。Lagrange 后来引用了 Girard 在方程方面的工作。后来,在十九世纪,这项工作引出了Galois, Cauchy和其他的数学家创作的群论

Jul 172020
 

作者:赵亮

问题:有哪些 \(\mathbb{Z}[x]\) 中的多项式,它们在有理数域 \(\mathbb{Q}\) 上是不可约的,而对任意素数 \(p\),模 \(p\) 以后在 \(\mathbb{Z}_p[x]\) 上都是可约的?

当时我给了回答,后来账号注销了,答案也就一并删除了。现在把我的原答案贴在这里:


我所知道的有两大类多项式:

第一类是所有的 Swinnerdon-Dyer 多项式,它们形如 \[f(x)=\prod(x\pm\sqrt{p_1}\pm\sqrt{p_2}\cdots\pm\sqrt{p_n}),\] 其中 \(p_1,\ldots,p_n\) 是互不相同的素数,乘积跑遍所有 \(2^n\) 种不同的组合。这种多项式都是不可约的整系数多项式,但是模任何素数 \(p\) 以后都分解为一次或者二次因式的乘积。

第二类来自分圆多项式,分圆多项式 \(\Phi_n(x)\) 是本原 \(n\) 次单位根在 \(\mathbb{Q}\) 上的极小多项式,其次数为 \(\phi(n)\),这里 \(\phi(\cdot)\) 是 Euler totient 函数。绝大多数分圆多项式模任何素数 \(p\) 都是可约的!实际上我们有如下结论:

定理:分圆多项式 \(\Phi_n(x)\) 模任何素数 \(p\) 都可约当且仅当 \(n\ne1,2,p,2p^k\),其中 \(p\) 是奇素数,\(k\) 是正整数。

你可以看到知乎那个问题下的回答中举的例子都是最简单的 Swinnerdon-Dyer 多项式或者分圆多项式的例子。

 Posted by at 3:00 am
Jul 082020
 

​7月7日,Thomas F. Bloom, Olof Sisask 在 arXiv 上传了一篇论文 Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions( arxiv.org/abs/2007.03528), 该文的主要结果是证明了:

Theorem 1 如果 \(A\subset \{1, . . . , N\}\), 且 \(A\) 不含非平凡的三项等差数列,即 \(x+y=2z\) 的解, \(x\ne y\). 则

\[|A|\ll \frac{N}{(\log N)^{1+c}}\]

\(c\gt 0\) 是绝对常数.

Thomas F. Bloom, Olof Sisask 的这个结果改进了Roth 的一个关于整数不含三项等差数列的上界的定理。

如果 \(A\subset \{1, . . . , N\}\), 且 \(A\) 不含非平凡的三项等差数列,那么 \(A\) 的阶可以有多大?

在此之前的记录是:\(A\) 的元素个数可达 \(O\Big(\frac{N}{(\log N)^{1-o(1)}}\Big)\). 这个结果可以找到三个不同的证明,这些证明在 \(o(1)\) 这一项有一点差异。这几个证明来自Sanders, Thomas F. Bloom, Olof Sisask, 还有 Schoen.

要指出的是:常数 \(c\) 是 principle effective,但是计算它需要艰巨的工作。

数学家们的期待,是 Behrend​ 提出的猜想,这个最佳的上界是

\[|A|\ll Ne^{-O((\log N)^c)}\]

接下来,说一下 Thomas F. Bloom的Olof Sisask 定理的第一个副产品:

Erdos 的著名猜想

Erdos 有一个著名的猜测是:如果 \(A\subset\Bbb N\), 且  \(\sum\limits_{n\in A}\frac1n=\infty\),那么 \(A\) 包含任意长的等差数列。

由 Thomas F. Bloom, Olof Sisask  的定理,可以导出 Erdos 的这著名猜想的一个不平凡的特殊情况:

Corollary 2 如果 \(A\subset\Bbb N\), 且  \(\sum\limits_{n\in A}\frac1n=\infty\),那么 \(A\) 含无穷多非平凡的三项等差数列。

Proof.  若不然,假定 \(A\subset\Bbb N\), 且 \(A\) 仅仅含有有限个非平凡的三项等差数列。于是,对于任意的 \(N\)

\[F(N)\colon=|A\cap\{1, . . . , N\}|\ll\frac{N}{(\log N)^{1+c}}+1,\]

这里的 \(c\) 是定理 1 的常数。进而

\[\sum_{n\in A\atop n\leq N}\frac1n=\frac{F(N)}{N}+\int_1^N\frac{F(t)}{t^2}\mathrm dt\ll \int_1^N\frac{1}{t(\log t)^{1+c}}\mathrm dt+1\ll1.\]

令 \(N\to\infty\), 得 \(\sum\limits_{n\in A}\frac1n\) 收敛。

\(A\) 的阶的下界

最后,顺便提一下 \(A\) 的阶的下界, 1946年 Behrend的高维球面构造法给出了

\[|A|\geq Ne^{-c\sqrt{\log N } }\]

Oct 122017
 

齐次多项式(Homogeneous polynomial)在数学中有其特殊的重要性.

在代数几何, Homogeneous polynomial 尤其受到偏爱.

实数域上的的 \(n\) 元多项式环, 以 \(\Bbb R[x_1, x_2,\dotsc, x_n]\) 表之.

Hilbert 限制在齐次多项式.

定义 5.1 设 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\), 其次数 \(\leqslant d\). 把 \(n+1\) 元 \(d\) 次齐次多项式

\begin{equation}\overline{p}(x_0, x_1,\dotsc, x_n)=x_0^dp\Big(\frac{x_1}{x_0}, \frac{x_2}{x_0},\dotsc, \frac{x_n}{x_0}\Big)\end{equation}

称为是 \(p\) 的齐次化(Homogenization). 具体来说, 当  \(p=\sum cx_1^{d_1}x_2^{d_2}\dotsm x_n^{d_n}\), 那么

\begin{equation}\begin{split}\overline{p}(x_0, x_1,\dotsc, x_n )&=x_0^d\sum c\Big(\frac{x_1}{x_0}\Big)^{d_1}\Big(\frac{x_2}{x_0}\Big)^{d_2} \dotsm \Big(\frac{x_n}{x_0}\Big)^{d_n}\\&=\sum cx_0^{d-d_1-d_2-\dotsb-d_n}x_1^{d_1}x_2^{d_2}\dotsm x_n^{d_n} \\&=\sum cx_0^{d_0}x_1^{d_1}x_2^{d_2}\dotsm x_n^{d_n},\end{split}\end{equation}

这里 \(d_0=d-d_1-d_2-\dotsb-d_n\).

定理 5.2  设 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\), 其次数 \(\leqslant d\). 如果 \(d\) 为偶数, 那么

  • \(p\) 非负当且仅当 \(\overline{p}\)  非负;
  • \(p\) 是多项式的平方和当且仅当 \(\overline{p}\)  能表成 \(\frac d2\) 次齐次多项式的平方和.

引理 5.3  假定 \(p\), \(p_1\), \(p_2\), \(\dotsc\), \(p_k\in \Bbb R[x_1, x_2,\dotsc, x_n]\) 都是多项式, \(p=p_1^2+p_2^2+\dotsm+p_k^2\).  如果 \(p_1\), \(p_2\), \(\dotsc\), \(p_k\) 不全是零多项式, 那么

  1. \(p\ne0\);
  2. \(\deg(p)=2\max\{\deg(p_l)|l=1, 2, \dotsc, k\}\);
  3. 如果 \(p\) 是 \(d\) 次齐次多项式, 则诸 \(p_l\) 皆是 \(\dfrac d2\) 次齐次多项式.

Proof   不妨 \(p_1\ne0\). 于是, 存在 \(x\in\Bbb R^n\), 使得 \(p_1(x)\ne0\). 然后

\[p(x)=p_1^2(x)+p_2^2(x)+\dotsm+p_k^2(x)\ge0\]

蕴涵 \(p(x)\ne0\).

写 \(p_l\) 为 \(p_l=p_{l0}+p_{l1}+p_{l2}+\dotsb+p_{ld}\), 这里 \(p_{li}\) 是 \(p_l\) 的 \(i\) 次齐次成分, \(d=\max\{\deg(p_l)|l=1, 2, \dotsc, k\}\). 很明显, \(\deg(p)\leqslant2d\); 1 表明 \(p\) 的 \(2d\) 次齐次成分 \(p^2_{1d}+p^2_{2d}+\dotsb+p^2_{kd}\ne0\), 因为有某 \(l\) 使得 \(p_{ld}\ne0\).

第 3 部分的证明与 2 完全类似, 考虑诸 \(p_l\) 的最低次齐次成分即可.  \(\Box\)

Proof   当 \(p\) 非负之时, 要证明 \(\overline{p}\) 非负, 若 \(x_0\ne0\), 由 \((1)\) 式即可; 若 \(x_0=0\), 由

\begin{equation}\overline{p}(0, x_1,\dotsc, x_n)=\lim_{h\to0}\overline{p}(h, x_1,\dotsc, x_n)\end{equation}

立得.

当 \(\overline{p}\) 非负之时, 只要注意

\begin{equation}p(x_1,\dotsc, x_n)=\overline{p}(1, x_1,\dotsc, x_n)\end{equation}

即知 \(p\) 非负.

如果\(p\) 是多项式的平方和, \(p=\sum\limits_{l=1}^kp_l^2\), 那么依据引理 5.3, \(\deg(p_l)\leqslant\dfrac d2\). 然后

\begin{equation}\overline{p}=\sum_{l=1}^k\Bigg(x_0^{\frac d2}p_l\Big(\frac{x_1}{x_0}, \frac{x_2}{x_0},\dotsc, \frac{x_n}{x_0} \Big)\Bigg)^2 \end{equation}

说明  \(\overline{p}\)  能表成 \(\frac d2\) 次齐次多项式的平方和.

如果  \(\overline{p}\)  能表成多项式的平方和, \(\overline{p}=\sum\limits_{l=1}^kh_l^2\),

\begin{equation}p=\overline{p}(1, x_1,\dotsc, x_n)=\sum_{l=1}^k\Big(h_l(1, x_1,\dotsc, x_n)\Big)^2\end{equation}

说明 \(p\)  能表成多项式的平方和.       \(\Box\)

现在, 很容易的, 我们顺便建立二次多项式非负与平方和的联系.

定理 5.4 设二次多项式 \(p\in \Bbb R[x_1, x_2,\dotsc, x_n]\) 非负, 那么 \(p\) 能写成多项式的平方和.

有了定理 5.2, 这个定理就是很显然的了: 只需要考虑与 \(p\) 对应的二次齐次多项式 \(\overline{p}\) 就够了. \(\overline{p}\) 是二次型. 依据高等代数的正定二次型的理论, 我们断言定理 5.4 为真.

Sep 242017
 

1971 IMO P1   Prove that the following assertion is true for \(n = 3\) and \(n = 5\), and that it is false for every other natural number \(n\gt2\):

If \(x_1\), \(x_2\), \(\dotsc\), \(x_n\) are arbitrary real numbers, then

\begin{equation}A_n(x)= \sum_{i=1}^n\prod_{j\ne i}\Big(x_i-x_j\Big)\geqslant 0.\end{equation}

Anneli Lax  and Peter Lax 1978 年在 [1] 指出: \(A_5(x)\) 不能表成二次型的平方和.

说明 \(A_5(x)\geqslant0\) 是不难的. 几个网站和无数的竞赛辅导书给的答案都是一致的:

无妨 \(x_1\geqslant x_2\geqslant x_3\geqslant x_4\geqslant x_5\). \((1)\) 的前两项的和

\begin{equation}\begin{split}&\hspace3.25ex(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)+(x_2-x_1)(x_2-x_3)(x_2-x_4)(x_2-x_5)\\&=(x_1-x_2)\Big((x_1-x_3)(x_1-x_4)(x_1-x_5)-(x_2-x_3)(x_2-x_4)(x_2-x_5)\Big)\\&\geqslant0,\end{split}\end{equation}

最后的不等式是因为 \(x_1-x_j\geqslant x_2-x_j\geqslant0\), \(j=3\), \(4\), \(5\).

同理, \((1)\) 的最后两项的和亦然 \(\geqslant0\).

至于 \((1)\) 的中间那项

\begin{equation}(x_3-x_1)(x_3-x_2)(x_3-x_4)(x_3-x_5)\geqslant0,\end{equation}

因了 \((x_3-x_1)(x_3-x_2)\geqslant0\), \((x_3-x_4)(x_3-x_5)\geqslant0\).

证明 \(A_5(x)\geqslant0\) 的途径不止这一种: 左边展开再证明局部的不等式应该也是可以的, 不过需要耐心; 使用导数是解决此类问题的普遍办法.

定理 4.1

  • 设 \(x_1\), \(x_2\), \(x_3\), \(x_4\), \(x_5\) 是实数, 有 \(A_5(x)\geqslant0\) 为真 ;
  • \(A_5(x)\) 不能写成多项式的平方和.

依据定理 2.2, 假定 \(A_5\) 能写成

\begin{equation}A_5=\sum Q_j^2,\end{equation}

此处的 \(Q_j\) 都是二次型. 显而易见, 当 \(A_5=0\) 时, \( Q_j=0\) 皆真.

\begin{equation}x_1=x_2,\;\; x_3=x_4=x_5,\end{equation}

或者对 \((5)\) 的指标进行置换得到的条件为真的时刻, 就符合每个 \(x_j\) 与其余的一个 \(x_k\) 相等.

Lemma 4.2  二次型 \(Q\), 只要条件 \((5)\) 或者 \((5)\) 的指标进行置换得到的条件任何一个为真, 总能导致 \(Q=0\), 那么二次型 \(Q\equiv0\).

若 Lemma 成立, 结合在\(A_5=0\) 蕴涵 \( Q_j=0\) 皆真, 我们知道 \((4)\) 中的 \(Q_j\equiv0\). 故而, \((4)\) 不能成立, 从而也就证明了定理 4.1.

Proof of the Lemma  记

\begin{equation}Q(x)=\sum c_{jk}x_jx_k,\;\; c_{jk}=c_{kj}.\end{equation}

根据假定, 当 \(x_1=x_2=y\), \(x_3=x_4=x_5=z\) 时,

\begin{equation}\begin{split}Q&=(c_{11}+2c_{12}+c_{22})y^2\\&+2(c_{13}+c_{14}+c_{15}+c_{23}+c_{24}+c_{25})yz\\&+(c_{33}+c_{44}+c_{55}+2c_{34}+2c_{35}+c_{45})z^2=0.\end{split}\end{equation}

既然无论 \(y\), \(z\) 为谁, 此皆为真, 于是

\begin{equation}c_{11}+2c_{12}+c_{22}=0;\end{equation}

\begin{equation}c_{13}+c_{14}+c_{15}+c_{23}+c_{24}+c_{25}=0;\end{equation}

\begin{equation}c_{33}+c_{44}+c_{55}+2c_{34}+2c_{35}+c_{45}=0.\end{equation}

这几个式子的指标置换得到的关系式也是成立的, 从 \((8)\) 式, 使用置换 \((12345)\to(34125)\), 则

\begin{equation}c_{33}+2c_{34}+c_{44}=0.\end{equation}

从 \((10)\) 式减去 \((11)\) 式,

\begin{equation}c_{55}+2c_{35}+2c_{45}=0.\end{equation}

考虑所有保持 \(5\) 不动的置换, 从 \((12)\) 式得到的关系式也是对的, 从而

\begin{equation}c_{j5}+c_{k5}=-\frac12 c_{55}\end{equation}

当 \(j\ne k\) 且 \(j\), \(k\ne5\). 进而

\begin{equation}c_{15}=c_{25}=c_{35}=c_{45}.\end{equation}

交换 \(1\) 和 \(5\), 以及 \(2\) 和 \(5\), 从 \((14)\) 式可得

\begin{equation}c_{51}=c_{21}=c_{31}=c_{41}.\end{equation}

\begin{equation}c_{12}=c_{52}=c_{32}=c_{42}.\end{equation}

根据 \( c_{jk}\) 的对称性, 从而

\begin{equation}c_{1j}=c_{2j}=c_{12}\qquad    j=3, 4,5.\end{equation}

带入 \((9)\) 式, 导致 \(6c_{12}=0\), 亦即 \(c_{12}=0\).  既然 \(1\), \(2\) 这一对数能换成别的任意的数, 于是

\begin{equation}c_{jk}=0 \qquad    j\ne k.\end{equation}

带入 \((12)\) 式, 定出 \(c_{55}=0\).  既然 \(5\) 能换成别的任意的数, 于是

\begin{equation}c_{jj}=0.\end{equation}

这便完成了引理的证明.

References

  1. Anneli Lax, Peter Lax, On sums of squares, Linear Algebra and its applications, 20, 71-75 (1978)
Sep 232017
 

M.D. Choi, T.-Y. Lam 1977 年举了一个例子: The Choi-Lam polynomial \(Q(x, y, z, w) =x^2y^2+y^2z^2+z^2x^2+w^4-4xyzw\) 不能写成多项式的平方和. 与 The Motzkin polynomial 一样, Choi-Lam 多项式也会在以后的证明成为关键角色.

后面的定理 5.2 说明 \(x^2y^2+y^2z^2+z^2x^2+w^4-4xyzw\) 不能写成多项式的平方和实际就是下面定理的后半部分:

定理 3.1 Choi-Lam 多项式

\begin{equation} Q(x, y,z) =x^2y^2+y^2z^2+z^2x^2+1-4xyz,\end{equation}

那么

  • \(Q(x, y,z)\geqslant0\) 为真对任意实数 \(x\), \(y\),  \(z\);
  • \(Q(x, y,z)\) 不能写成多项式的平方和.

方法是完全照搬的. 如果 \(Q(x, y, z)\) 是一些次数(至多)为 \(2\) 的多项式的平方和:

\begin{equation} Q(x, y, z) =\sum_{l=1}^k\Big(a_l+b_lx+c_ly+d_lz+e_lx^2+f_ly^2+g_lz^2+h_lxy+i_lyz+j_lzx\Big)^2,\end{equation}

这里 \(a_l\), \(b_l\), \(c_l\), \(d_l\), \(e_l\), \(f_l\), \(g_l\), \(h_l\), \(i_l\) 和 \(j_l\) 都是实常数, \(l=1\), \(2\), \(\dotsc\), \(k\).

\((1)\) 没有 \(x^4\), \(y^4\), \(z^4\) 项, 因此\((2)\) 的右边的这些项的系数为 \(0\). 于是

\[\sum_{l=1}^ke_l^2=\sum_{l=1}^kf_l^2=\sum_{l=1}^kg_l^2=0,\]

故 \(e_l=f_l=g_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\).

\((1)\) 没有 \(x^2\) 项, 因此\((2)\) 的右边的 \(x^2\) 项的系数为 \(0\). 于是

\[\sum_{l=1}^k\Big(b_l^2+2a_le_l\Big)=0,\]

故 \(b_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\).

同样的, \((1)\) 没有 \(y^2\), \(z^2\) 项, 因此 \(\sum\limits_{l=1}^kc_l^2=0\). 于是 \(c_l=d_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\).

注意 \((1)\) 中的 \(xyz\) 项的系数是 \(-4\), 故

\[2\sum_{l=1}^k\Big(b_li_l+c_lj_l+d_lh_l\Big)=-4.\]

但这是不可能的, 因  \(b_l=c_l=d_l=0\), \(l=1\), \(2\), \(\dotsc\), \(k\), 故而 \(Q(x, y, z)\) 不能写成多项式的平方和.

类似定理 2.1, 我们也可以使用定理 2.2 来直接证明 \(Q(x, y, z, w) =x^2y^2+y^2z^2+z^2x^2+w^4-4xyzw\) 不能写成多项式的平方和:

\begin{equation} Q(x, y, z, w) =\sum\Big(A_lx^2+B_lxy+C_lxz+D_ly^2+E_lxw+F_lz^2+G_lyz+H_lyw+I_lzw+J_lw^2\Big)^2.\end{equation}

比较两端 \(x^4\), \(y^4\), \(z^4\) 的系数, 得 \(A_l=D_l=F_l=0\).

比较两端 \(x^2w^2\) 的系数, 得

\[\sum\Big(2A_lJ_l+E_l^2\Big)=0.\]

故 \(E_l=0\). 类似的推理, \(H_l=I_l=0\).

此时, \((3)\) 已经是如下

\begin{equation} Q(x, y, z, w) =\sum\Big(B_lxy+C_lxz+G_lyz+J_lw^2\Big)^2.\end{equation}

比较上式两端 \(xyzw\) 的系数, 矛盾!