Jul 192019
 

2019 第 60 届 IMO 解答

Problem 1 ()

很稀松平常的方程. 令 \(a=0\), 于是

\[f(0) + 2f(b) = f(f(b)).\]

因此, 我们只要考察

\[f(2a) + 2f(b) = f(0) + 2f(a+b) \]

就成.

令 \(a=1\), 我们有

\[f(2) + 2f(b) = f(0) + 2f(1+b). \]

这也就是 \(f(b+1) – f(b) =\frac{f(2)-f(0)}2\). 从而, \(f(n)\) 是线性的. 设 \(f(n)=An+B\)(\(A\), \(B\) 是待定的常数). 结合 \(f(0) + 2f(n) = f(f(n))\) 可知

\[B+2(An+B)=A(An+B)+B.\]

于是 \(2A=A^2\), \(3B=AB+B\). 故而, \((A,B)=(0,0)\), \((2, k)\), 这里 \(k\) 是任意的整数.

经检验, \(f(n)=0\) 与 \(f(n)=2n+k\) 符合要求(\(k\) 是任意的整数常数).

综上所述, 所求的函数即是 \(f(n)=0\) 与 \(f(n)=2n+k\) (\(k\) 是任意的整数常数).

Problem 2 ()

 Posted by at 2:46 pm  Tagged with:
Jul 182017
 

2017 第 58 届 IMO 解答

Problem 1 (South Africa)

Lemma 1 当实数 \(x\geqslant6\), 则 \(x\lt(x-3)^2\).

Lemma 2 若整数 \(m\) 符合 \(m \equiv 2\pmod3\), 则 \(m\) 不能是完全平方.

若数列 \(\{a_n\}\) 的某一项 \(\gt1\), 则紧挨着的后一项也 \(\gt1\). 因此, \(a_0\gt1\) 说明这数列的所有项都 \(\gt1\).

首先, 若数列 \(\{a_n\}\) 的某一项 \(a_i\) 使得 \(a_i\equiv 2\pmod3\), 则这一项不是完全平方, \(a_{i+1}=a_i+3\), \(a_{i+1}\equiv 2\pmod3\). 于是, \(a_0\equiv 2\pmod3\) 之时, 数列 \(\{a_n\}\) 就是一个以 \(a_0\) 为首项, 公差为 \(3\) 的等差数列. 此时, 数列 \(\{a_n\}\) 的各项互不相同导出如此这般的 \(a_0\) 不是我们寻找的. 进而, 数列 \(\{a_n\}\) 的如果有一项 \(\equiv 2\pmod3\), 那么这数列不可能有无穷多项相同.

其次: 在数列 \(\{a_n\}\) 中, 如果存在某一项 \(a_s(s\geqslant0)\) 使得 \(a_s \equiv 0, 1\pmod3\), 且 \(a_s\geqslant6\), 那么必定有大于 \(s\) 的正整数 \(t\), 使得 \(a_t\lt a_s\), 并且当 \(a_s \equiv 0\pmod3\) 时, \(a_t\equiv 0\pmod3\); 当 \(a_s \equiv 1\pmod3\) 时, \(a_t\not\equiv 0\pmod3\).

这是因为, 在 \(a_s \equiv 0, 1\pmod3\), \(a_s\geqslant6\) 时, 我们依次考察从 \(a_s\) 开始的项:

\begin{equation}a_s, a_{s+1}, a_{s+2}, \dotsc.\end{equation}

然后

\[a_s\lt(a_s-3)^2,\qquad a_s \equiv (a_s-3)^2\pmod3\]

表明 \((1)\) 中必有一项 \(a_u(u\geqslant s)\), 满足 \(a_u\) 为完全平方, 且 \(a_u\leqslant (a_s-3)^2\). 取 \(t=u+1\), 则 \(t\gt s\), \(a_t=a_{u+1}\leqslant a_s-3\) 蕴涵 \(t\) 符合我们的要求.

现在, 当 \(a_0\equiv 0, 1\pmod3\), 我们知道必有 \(\{a_n\}\) 的某一项 \(a_j(j\geqslant0)\), 使得 \(a_j\lt6\), 并且 \(a_0 \equiv 0\pmod3\) 时, \(a_j\equiv 0\pmod3\); 当 \(a_0 \equiv 1\pmod3\) 时, \(a_j\not\equiv 0\pmod3\).

事实上, 如果 \(a_0\geqslant6\), 那么必定有大于正整数  \(t_1\), 使得 \(a_{t_1}\lt a_0\); 在 \(a_{t_1}\geqslant6\), 那么必定有大于 \(t_1\) 的正整数 \(t_2\), 使得 \(a_{t_2}\lt a_{t_1}\); 在 \(a_{t_2}\geqslant6\), 有大于 \(t_2\) 的正整数 \(t_3\), 使得 \(a_{t_3}\lt a_{t_2}\);…; 如此这般下去. 但这个过程不可能一直继续: 我们最终会得到 \(\{a_n\}\) 的某一项 \(a_j(j\geqslant0)\), 使得 \(a_j\lt6\).

既然 \(a_j\), 使得 \(1\lt a_j\lt6\), 于是 \(a_j\) 只可能是 \(2\), \(3\), \(4\),  \(5\).

当 \(a_j=4\) 时, \(a_{j+1}=2\). 于是, 在 \(a_j\) 为 \(2\), \(4\), \(5\) 之一(此时 \(a_0 \equiv 1\pmod3\)), 当 \(k\gt j\), 有 \(a_k\equiv 2\pmod3\). 因之, 数列 \(a_{j+1}\), \(a_{j+2}\), \(a_{j+2}\), \(\dotsc\) 是一个以 \(a_{j+1}\) 为首项, 公差为 \(3\) 的等差数列, 故而不可能在数列 \(\{a_n\}\) 有无穷多项重复.

当 \(a_j=3\) 时(此时 \(a_0 \equiv 0\pmod3\)), \(a_{j+1}=6\), \(a_{j+2}=9\), \(a_{j+3}=3\). 于是, 数列 \(\{a_n\}\) 从 \(a_j\) 开始的项依次就是

\[3, 6, 9, 3, 6, 9, 3, 6, 9, \dotsc.\]

此时, \(3\), \(6\), \(9\) 都会在数列 \(\{a_n\}\) 无穷多次的重复出现,

综上所述, 我们寻找的符合要求的所有 \(a_0\) 就是全体的满足 \(a_0 \equiv 0\pmod3\) 的正整数.

Problem 2 (Dorlir Ahmeti, Albania)

本题的难点是 \(f(x)\) 为单射.

如果\(f(0)=0\).

令 \(y=0\), 有

\[f(0)+f(x)=f(0),\]

即, 对于任意的实数 \(x\), \(f(x)=0\) 为真.

如果 \(f(0)\ne0\). 在 \(f(x)\) 为符合要求的函数, 则 \(-f(x)\) 亦为所求. 故此, 我们只要考虑 \(f(0)\gt0\) 此种情况就行了.

令 \(x=y=0\), 得

\[f(f^2(0))+f(0)=f(0).\]

若记 \(f^2(0)=a\), 则 \(f(a)=0\).

如果 \(f(b)=0\), 则 \(b=1\).

若不然, \(b\ne1\). 令 \(x=\dfrac b{b-1}\), \(y=b\), 则

\begin{equation}f(f(\frac b{b-1})f(b))+f(\dfrac b{b-1}+b)=f(\frac {b^2}{b-1}),\end{equation}

即 \(f(0)=0\). 矛盾!  故而, \(f(a)=0\) 蕴涵 \(a=1\), 进而, 根据 \(f^2(0)=1\), 鉴于我们只观摩  \(f(0)\gt0\), 于是 \(f(0)=1\), \(f(1)=0\).

令 \(y=1\), 我们得出

\[f(0)+f(x+1)=f(x),\]

\begin{equation}f(x+1)=f(x)-1.\end{equation}

下面指出: \(f(x)\) 为单射.

事实上, 如果实数 \(a\) 和 \(b\) 使得 \(f(a)=f(b)\). 注意

\begin{equation}\big(a^2-4(b-1)\big)+\big(b^2-4(a-1)\big)=(a-2)^2+(b-2)^2\geqslant0\end{equation}

说明 \(a^2-4(b-1)\geqslant0\), \( b^2-4(a-1)\geqslant0\) 至少一个, 不妨前者, 为真.

然后, \(a^2-4(b-1)\geqslant0\) 蕴涵二次方程 \(x^2-ax+b-1=0\) 有两个实根 \(r\), \(s\). 故此, \(r+s=a\), \(rs=b-1\).

令 \(x=r\), \(y=s\),

\[f(f(r)f(s))+f(r+s) = f(rs).\]

根据 \((3)\),

\[f(f(r)f(s)+1)+f(r+s) = f(rs+1).\]

由 \(r+s=a\), \(rs+1=b\),

\begin{equation}f(f(r)f(s)+1) = 0\end{equation}

这表示 \(f(r)f(s)+1=1\), 即 \(f(r)f(s)=0\), 故 \(f(r)=0\), 即 \(r=1\),  或 \(f(s)=0\), 即 \(s=1\). 无论是 \(r=1\), 此时 \(a=b=s+1\), 还是 \(s=1\), 此时 \(a=b=r+1\), 都能得出 \(a=b\). 从而 \(f(x)\) 为单射.

令 \(y=-x\), 得

\[f(f(x)f(-x))+f(0) = f(-x^2).\]

这就是

\[f(f(x)f(-x)) = f(-x^2)-1=f(1-x^2).\]

\(f(x)\) 为单射导出

\begin{equation}f(x)f(-x) =1-x^2.\end{equation}

令 \(y=1-x\), 得

\[f(f(x)f(1-x))+f(1) = f(x-x^2).\]

这就是

\[f(f(x)f(1-x))= f(x-x^2).\]

\(f(x)\) 为单射导出 \(f(x)f(1-x)=x-x^2\), 即

\begin{equation}f(x)(f(-x)-1) =x-x^2.\end{equation}

于是

\[f(x)=f(x)f(-x)-(x-x^2)=(1-x^2)-(x-x^2)=1-x.\]

经检验, \(f(x)=1-x\), \(f(x)=x-1\), \(f(x)=0\) 满足条件, 从而就是我们要找的全部函数.

Problem 3 (Austria)

这个题刷新了记录, 成了 IMO 得分最低的题. 考场上居然只有 2 个人得到 7 分, 一共也只有 7 人的分不是 0, 尤其中国, USA 这样的竞赛强国在这个题都得了 0. 中国上一次出现这样的尴尬还是 21 年前, 即 1996 年的 P5 的几何不等式.

本题有专文处理: IMO 2017 solutions II

Problem 4 (Charles Leytem, Luxembourg)

写第 3 题花费不少时日, 第二天的题迟迟未动笔. 这个题只是寥寥数语.

IMO 2017

IMO 2017 p4

记 \(RA\) 与 \(\Gamma\) 的另一个交点为 \(B\). 连结 \(KR\), \(KS\), \(BS\), \(BT\).

\(K\), \(R\), \(J\), \(S\) 四点共圆, 以及\(S\), \(J\), \(A\), \(B\) 亦是四点共圆, 定出 \(\angle KRS=\angle KJS=\angle RBS\).

\(RA\) 为 \(\Omega\) 的切线蕴涵 \(\angle RKS=\angle BRS\). 于是, \(\triangle RKS\sim\triangle BRS\), 故此

\(\angle RSK=\angle BSR\), 然后  \(\angle RSK=\angle BSR\);

以及

\(\frac{KS}{RS}=\frac{RS}{BS}\),  结合 \(RS=TS\), 然后

\[\frac{KS}{TS}=\frac{TS}{BS}.\]

至此, 我们可以断言 \(\triangle KTS\sim\triangle TBS\), 进而 \(\angle KTS=\angle TBS\), 这也就导出了直线 \(KT\) 与圆 \(\Gamma\) 相切.

Problem 5 (Russia)

用归纳法几句话就能透彻.

把全部的队员按身高分成 \(N\) 组: 身高最低的 \(N+1\) 个队员一组, 身高次低的 \(N+1\) 个队员一组, …, 身高最高的 \(N+1\) 个队员一组. 我们来从每组选出  \(2\) 人, 使得在最后的  \(2N\) 人, 属于同组的  \(2\) 人是紧挨的.

\(N=2\) 时, 这排球员左边 \(3\) 人必有 \(2\) 人属同一组, 选出这 \(2\) 人; 右边 \(3\) 人必有 \(2\) 人亦属同一组, 选出这 \(2\) 人. 如此, 教练移走了 \(2\) 人, 剩下 \(4\) 人的左边  \(2\) 人与右边 \(2\) 人分属不同的组.

假定对于 \(N(N-1)\) 个球员结论为真, \(N\geqslant3\). 下面来考察 \(N(N+1)\) 个球员.

这一排最左边的 \(N+1\) 人必有 \(2\) 人是同一组. 在这\(N+1\) 人选出同组的 \(A\) 和 \(B\),  且 \(A\) 在 \(B\) 左边, 并且 \(B\) 左边的队员都属于不同的组. 移走 \(B\) 左边除 \(A\) 以外的其他队员, 再把 \(B\) 右边那些与 \(B\) 同组队员全部移走. 这样, \(B\) 右边的队员全部与 \(B\) 不同组, 并且 \(B\) 不属于的每个组至少留下 \(N\) 人在 \(B\) 右边. 如果有哪个组有 \(N+1\) 人在 \(B\) 右边, 就随便在这组移走 \(1\) 人. 现在, \(B\) 右边 \(N(N-1)\) 个球员分属于 \(N-1\) 组, 每组 \(N\) 人. 由归纳假设, \(B\) 右边的 \(N(N-1)\) 个球员可以每组选出 \(2\) 人是紧挨的. 这选出的 \(2(N-1)\) 人, 以及 \(A\) 和 \(B\), 这 \(2N\) 个队员属于同组的  \(2\) 人是紧挨的.

Problem 6 (John Berman, USA)

本题用来做 2 或者 5 是比较合适的.

对 \(|S|\) 进行归纳.

当 \(S\) 只有一个元素 \((p_0, q_0)\) 时, 既然 \((p_0, q_0)=1\) 时, 著名的 Bezout 恒等式指出存在整数 \(a\), \(b\), 使得

\[ap_0+bq_0=1.\]

令 \(P(x, y)=ax+by\), 此多项式对于\(S\) 的惟一的元素 \((p_0, q_0)\), 有 \(P(p_0, q_0)=1\).

假定当 \(|S|=m\) 时, 命题为真, \(m\geqslant1\). 下面认定 \(S = \left \{ (p_1, q_1), (p_2, q_2), \dotsc, (p_{m+1}, q_{m+1}) \right \}\), \(|S|=m+1\).

依归纳假设, 有齐次整系数多项式 \(G(x, y)\) 符合 \(G(p_k, q_k) = 1\), \(k=1\), \(2\), \(\dotsc\), \(m\). 令 \(\deg(G)=g\).

然后,  \((p_{m+1}, q_{m+1}) =1\), 故此, 存在整数 \(u\), \(v\), 使得

\begin{equation}up_{m+1}+vq_{m+1}=1.\end{equation}

考察

\begin{equation}F(x, y) = \big (G(x, y) \big )^h – w\Big(\prod_{k=1}^m\left ( q_kx-p_ky \right ) \Big) \Big(ux+vy\Big)^{gh-m},\end{equation}

这里的 \(h\) 是大于 \(\dfrac mg\) 的待定的正整数, \(w\) 是待定的整数. 于是, \(F(x, y)\) 是整系数齐次多项式, 并且 \(F(p_k, q_k) = 1\), \(k=1\), \(2\), \(\dotsc\), \(m\).

令 \(A= G(p_{m+1}, q_{m+1})\), \(B=\prod\limits_{k=1}^{m}\left(q_kp_{m+1}-p_kq_{m+1} \right )\). 下面来说明  \((A, B)=1\).

若不然, 存在质数 \(p\), 满足 \(p|G(p_{m+1}, q_{m+1})\), \(p|\left(q_kp_{m+1}-p_kq_{m+1} \right )\), 这里 \(k\in\{1, 2, \dotsc, m\}\).

由 \(\left(q_k, p_k \right )=1\), 因此 \(q_k\), \(p_k \) 必有一个不被 \(p\) 整除, 不妨 \(q_k\) 不被 \(p\) 整除. 既然 \(G(x, y)\) 是齐次多项式, 并且 \(p_kq_{m+1}\equiv q_kp_{m+1}\pmod p\), 于是

\begin{equation}q_{m+1}^g = q_{m+1}^g G(p_k, q_k) = G(p_kq_{m+1}, q_kq_{m+1}) \equiv G(q_kp_{m+1}, q_kq_{m+1}) = q_k^g G(p_{m+1}, q_{m+1}) \equiv 0 \pmod p\end{equation}

导出 \(p|q_{m+1}\). 结合 \(p|\left(q_kp_{m+1}-p_kq_{m+1} \right )\), 给出 \(p|p_{m+1}\). 矛盾!

既然 \((A, B)=1\), Euler 定理指出, 存在足够大的正整数 \(h\) 以及整数 \(w\), 使得

\begin{equation}A^h – wB = 1.\end{equation}

如此一来,

\begin{equation}\begin{split}F(p_{m+1}, q_{m+1}) &= \big (G(p_{m+1}, q_{m+1}) \big )^h – w\Big(\prod_{i=1}^m\left ( q_ip_{m+1}-p_i q_{m+1} \right ) \Big)\Big(up_{m+1}+v q_{m+1}\Big)^{gh-m}\\&=A^h – wB=1.\end{split}\end{equation}

这便完成了征途.

Annotations

  1. 第 2 题的函数方程, 没有什么新奇的. 得分那么低, 倒是有点出乎意料.
  2. 第二天的题其实没啥特别, 难度也不大. 题 6 可以推广为更普遍的形式.
  3. 第三题确实有独到之处, 是这个试卷仅有的好题.  可以对 \(m\) 个猎人考虑同样的问题.
  4. 这六个题何以成为史上得分最低的试卷呢! 除了第三题, 别的题为啥得分也不高?
  5. 大陆居然在函数方程载了跟头: 函数方程应该是必须掌握的基本功. 最难的题最可能来自组合, 这没有疑问; 数论的难题虽多, 但能成为竞赛卷子的妙题却不容易; 考场上的几何再难, 也没太大意思.
 Posted by at 2:24 pm  Tagged with:
Jul 182017
 

                                      Day \(1\)

 Tuesday, July 18, 2017

Problem 1. For each integer  \(a_0\gt1\), define the sequence \(a_0\), \(a_1\), \(a_2\), \(\dotsc\) by:

\[a_{n+1} = \begin{cases}\sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer,} \\a_n + 3 & \text{otherwise.}\end{cases}\quad \text{for each}\; n\geqslant 0.\]

Determine all values of \(a_0\) so that there exists a number \(A\) such that \(a_n = A\) for infinitely many values of \(n\).

Problem 2. Let \(\Bbb R \) be the set of real numbers. Determine all functions \(f\colon \Bbb R \rightarrow \Bbb R\) such that, for all real numbers \(x\) and \(y\),

\[f\big(f(x)f(y)\big) + f(x+y) = f(xy).\]

Problem 3. A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit’s starting point, \(A_0\) , and the hunter’s starting point, \(B_0\) are the same. After \(n-1\) rounds of the game, the rabbit is at point \(A_{n-1}\) and the hunter is at point \(B_{n-1}\) . in the \(n^{\text{th}}\) round of the game, three things occur in order:

i) The rabbit moves invisibly to a point \(A_n\) such that the distance between \(A_{n-1}\) and \(A_n\) is exactly \(1\) .

ii) A tracking device reports a point \(P_n\) to the hunter. The only guarantee provided by the tracking device to the hunter is that the distance between \(P_n\) and \(A_n\) is at most \(1\) .

iii) The hunter moves visibly to a point \(B_n\) such that the distance between \(B_{n-1}\) and \(B_n\) is exactly \(1\) .

Is it always possible, no matter how the rabbit moves, and no matter what points are reported by the tracking device, for the hunter to choose her moves so that after \(10^9\) rounds, she can ensure that the distance between her and the rabbit is at most \(100\) ?

                                      Day \(2\)

 Wednesday, July 19, 2017

Problem 4. Let \(R\) and \(S\) be different points on a circle \(\Omega\) such that \(RS\) is not a diameter. Let \(\ell\) be the tangent line to at \(R\). Point \(T\) is such that \(S\) is the midpoint of the line segment \(RT\). Point \(J\) is chosen on the shorter arc \(RS\) of \(\Omega\) so that the circumcircle  \(\Gamma\) of triangle \(JST\) intersects \(\ell\) at two distinct points. Let \(A\) be the common point of \(\Gamma\) and \(\ell\) that is closer to \(R\). Line \(AJ\) meets \(\Omega\) again at \(K\). Prove that the line \(KT\) is tangent to \(\Gamma\).

Problem 5. An integer \(N\geqslant2\) is given. A collection of \(N(N + 1)\) soccer players, no two of whom are of the same height, stand in a row. Sir Alex wants to remove \(N(N-1)\) players from this row leaving a new row of \(2N\) players in which the following \(N\) conditions hold:

(1) no one stands between the two tallest players,

(2) no one stands between the third and fourth tallest players,

\(\vdots\)

(N) no one stands between the two shortest players.

Show that this is always possible.

Problem 6. An ordered pair \((x, y)\) of integers is a primitive point if the greatest common divisor of \(x\) and \(y\) is \(1\). Given a finite set \(S\) of primitive points, prove that there exist a positive integer \(n\) and integers \(a_0\), \(a_1\) , \(\dotsc\), \(a_n\) such that, for each \((x, y)\) in \(S\), we have:

\[a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dotsb + a_{n-1}xy^{n-1} + a_ny^n = 1.\]

 Posted by at 2:09 pm  Tagged with:
Jul 112016
 

2016 第 57 届 IMO 解答

Problem 1 (The Kingdom Of Belgium)

IMO 2016

IMO 2016 Problem 1

注意 \(\triangle FAB\), \(\triangle DAC\), \(\triangle EAD\) 是顶角相等的等腰三角形, 即

\[\angle FBA=\angle FAB=\angle DAC=\angle DCA= \angle EAD=\angle EDA.\]

既然 \(\triangle FAB\sim \triangle DAC\), 于是 \(\triangle ABC\sim \triangle AFD\), 进而

\begin{equation}\begin{split}\angle FDC&=180^\circ-\angle ADF-\angle DAC-\angle DCA\\&=180^\circ-\angle ACB-\angle FAB-\angle FBA\\&=\angle FBC=90^\circ,\end{split}\end{equation}

\(D\) 落在以 \(M\) 为心, \(MB\) 为半径的圆上, 即 \(D\), \(F\), \(B\), \(C\) 四点共圆, 并且 \(FC\) 即为此圆的直径. 记这个圆为 \(\Gamma_1\). 然后, \(\angle FBD=\angle FCD=\angle FBA\) 表明 \(FB\) 平分 \(\angle DBA\). 结合 \(AF\) 是 \(\angle DAB\) 的平分线, 我们知道 \(F\) 就是 \(\triangle DAB\) 的内心, 并且 \(DA=DB\), 这是因为

\[\angle DBA=2\angle FBA=\angle DAB.\]

从 \(\angle DBA+\angle DEA =2\angle FAB+\angle DEA=180^\circ\) 得出 \(E\), \(A\), \(B\), \(D\) 四点共圆. \(EA=ED\), 以及 \(F\) 为 \(\triangle DAB\) 的内心蕴涵 \(E\), \(F\), \(B\) 三点共线, \(EF=EA=ED\).

\(M\) 是直角三角形 \(FBC\) 的斜边 \(FC\) 的中点, 因此 \(MF=MB\). 由

\[\angle MFB= \angle FBA+\angle FBA=\angle DAB\]

得出 \(\triangle MFB\sim \triangle DAB\), 进而 \(\angle FMB=\angle ADB\), 于是 \(M\), \(D\), \(A\), \(B\) 四点共圆.  至此, 我们已经明白, \(A\), \(B\), \(M\), \(D\), \(E\) 五点共圆 \(\Gamma_2\). \(\angle ADE=\angle EAD=\angle DAC=\angle BAM\) 说明 \(AE=ED=MD=MB\).

四边形 \(MXEA\) 为平行四边形, \(MX=AE=MB\) 定出 \(X\) 位于以  \(M\) 为心, \(MB\) 为半径的圆上, 即 \(D\), \(F\), \(B\), \(C\), \(X\)  五点共圆

\[\angle DEA+\angle EAC= \angle DEA+(\angle EAD+\angle DAC)=\angle DEA+(\angle EAD+\angle EDA)=180^\circ\]

蕴涵 \(ED\parallel AC\). 既然 \(EX\parallel AC\),  从而 \(E\), \(D\), \(X\) 三点共线.

既然 \(MX=AE=FE\), \(FM\parallel EX\), 从而四边形 \(FMXE\) 为等腰梯形,  四边形 \(FMXE\) 在圆 \(\Gamma_3\) 上.

最后, \(\Gamma_1\), \(\Gamma_2\), \(\Gamma_3\) 两两的根轴 \(BD\), \(FX\), \(ME\) 是相交于同一点.

解答二

Problem 2 ( Australia)

先来指出符合要求的 \(n\) 必须 \(9\mid n\).

事实上, 如果在一张 \(n \times n\) 方格表填入字母 \(I\), \(M\), \(O\) 满足要求, 显然 \(3\mid n\). 令 \(n=3k\), 这里 \(k\) 是正整数. 我们来考察符合下列三个条件之一的所有格子:

  • 第一类: 第 \(2\), \(5\), \(8\), \(\dotsc\), \(3k-1\) 行的所有格子;
  • 第二类: 第 \(2\), \(5\), \(8\), \(\dotsc\), \(3k-1\) 列的所有格子; 以及
  • 第三类: 小方格个数是三的倍数的所有对角线上的全部格子.

注意,  这个\(n \times n\) 方格表中既属于第一类也属于第二类的格子对我们考察的格子的贡献为 \(4\) 次, 而这个方格表其余的格子对我们考察的格子的贡献恰是 \(1\) 次. 由此, 这个\(n \times n\) 方格表中既属于第一类也属于第二类的格子, 也就是这个方格表的第 \(2\), \(5\), \(8\), \(\dotsc\), \(3k-1\) 行; 第 \(2\), \(5\), \(8\), \(\dotsc\), \(3k-1\) 列的交叉处的全部 \(k^2\) 个格子恰有三分之一填入字母 \(I\), 三分之一填入字母 \(M\), 三分之一填入字母 \(O\). 这就迫使 \(3\mid k^2\), 进而 \(3\mid k\). 现在我们清楚 \(9 \mid n\).

现在, 我们说明当 \(9 \mid n\) 之时, 可在一张 \(n \times n\) 方格表填入字母 \(I\), \(M\), \(O\) 满足要求.

当 \(n=9\) 时的构造如下:

IMO 2016

IMO 2016 Problem 2 Proof 1

对于 \(n=9l\) (\(l\) 是正整数), 取 \(l^2\) 个这样的已经填入字母 \(I\), \(M\), \(O\) 的 \(9 \times 9\) 方格表. 然后, 按照每行 \(l\) 个, 每列 \(l\) 个这样的 \(9 \times 9\) 方格表排成一个 \(n \times n\) 的方格表.

对这个 \(l\times l\) 方格表, 其每一行(列)是如上的 \(9 \times 9\) 方格表的某一行(列)重复 \(l\) 次, 因此, 这个\(l\times l\) 方格表, 其每一行(列)有同样数目的字母 \(I\), \(M\), \(O\).

这个 \(l\times l\) 方格表的任一条数目是三的倍数的对角线穿过了一些 \(9 \times 9\) 方格表. 既然小方格 \((i,j)\) 在有三的倍数个数的小方格的某条对角线上, 当且仅当 \(i\equiv j\pmod 3\) 或 \(i+j\equiv 1\pmod 3\), 于是此 \(l\times l\) 方格表的对角线在这样的一个 \(9 \times 9\) 方格表内的部分恰是这 \(9 \times 9\) 方格表的一条数目是三的倍数的对角线, 因此这部分, 进而这个 \(l\times l\) 方格表的任一条数目是三的倍数的对角线, 有同样数目的字母 \(I\), \(M\), \(O\).

综上所述, 我们寻找的所有符合要求的正整数 \(n\) 恰是 \(9\) 的倍数的全体正整数.

Problem 3 ( Russia)

这是本届赛事最难的题, 只有 10 份考卷写出了正确的答案.

这个题的路途是有多种工具, 尤其如果允许稍微一点点的代数数论.

结果可以稍微加强:

设圆内接多边形 \(P=A_1A_2\dotsm A_k\) 的面积为 \(S\), 且对于任意三角形 \(A_iA_jA_l\)(\(1\leqslant i\lt j\lt l\leqslant k\)), 其面积 \(S_{\triangle A_iA_jA_l}\) 满足 \(2S_{\triangle A_iA_jA_l}\) 是正整数. 设 \(n\) 是一个正奇数, 满足 \(P\) 的每条边的长度的平方是被 \(n\) 整除的正整数, 且 \(P\) 的每条对角线长度的平方是正整数. 那么, \(2S\) 是正整数, 且被 \(n\) 整除.

只要指出, 对于 \(n=p^\alpha\), 结论为真即可(\(p\) 为奇质数, \(\alpha\) 是正整数).

对 \( k\) 进行归纳.

在 \( k=3\) 的时刻, 记 \(P\) 的边长为 \(a\), \(b\), \(c\). 根据 \(n\mid(a^2, b^2, c^2)\) 以及

\[16S^2=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\]

得 \(n^2\mid 16S^2\), 也就是 \(n^2\mid (4S)^2\). 于是 \(n\mid 4S\), 进而 \(n\mid 2S\).

假定当 \(k\) 是满足 \(3\leqslant k\lt m\) 时 (\(m\geqslant4\) 是正整数), \(n\mid 2S\). 我们来考察 \(k=m\).

\[A_iA_j^2=p^{\alpha_{ij}}z_{ij},\;\alpha_{ij}\in\Bbb N,\; z_{ij}\in\Bbb N, \;\big(z_{ij}, p\big)=1, \; 1\leqslant i\lt j\leqslant m,\]

这里 \(\Bbb N\) 为全部非负整数组成的集合. 于是, 当 \(j=i+1\) 时, \(\alpha_{ij}\geqslant \alpha\). 这里, 我们认为 \(A_{m+1}=A_1\).

\[u=\max\{\alpha_{ij}, \; 1\leqslant i\lt j\leqslant m,\; j-i\gt1\}.\]

我们指出, 必有 \(u\geqslant \alpha\).

如若不然, \(0\leqslant u\lt \alpha\). 记 \(v=\min\{\alpha_{ij}, \; 1\leqslant i\lt j\leqslant m,\; j-i\gt1\}\). 选择两个符合 \(1\leqslant i\lt j\leqslant m\), \(j-i\gt1\) 的正整数 \(i\), \(j\), 使得 \(p^v\parallel A_iA_j^2\). 观察四边形 \(A_{i-1}A_iA_{i+1}A_j\)(约定 \(A_0=A_m\)):

IMO 2016

IMO 2016 Problem 3 Proof 1

Ptolemy 定理给出

\[ab+cd=ef.\]

两端平方

\[a^2b^2+c^2d^2+2abcd=e^2f^2.\]

可见, \(2abcd\) 是正整数. 注意,

\[2abcd=2\sqrt{p^{\alpha_{(i-1)i}+\alpha_{(i+1)j}+\alpha_{i(i+1)}+\alpha_{(i-1)j}}z_{(i-1)i}z_{(i+1)j}z_{i(i+1)}z_{(i-1)j}}=2p^{\alpha+v}\sqrt z, \]

这里 \(z=p^{\alpha_{(i-1)i}+\alpha_{(i+1)j}+\alpha_{i(i+1)}+\alpha_{(i-1)j}-2\alpha-2v}z_{(i-1)i}z_{(i+1)j}z_{i(i+1)}z_{(i-1)j}\) 是正整数. 于是,  正整数的算术平方根 \(\sqrt z\) 是有理数, 进而, 是正整数. 从而 \(p^{\alpha+v}\mid 2abcd\).

显而易见, \(p^{\alpha+v}\mid a^2b^2\), \(p^{\alpha+v}\mid c^2d^2\) 蕴涵 \(p^{\alpha+v}\mid e^2f^2\). 这是不可能的: \(p^v\parallel f^2\), \(a_{(i-1)(i+1)}\lt\alpha\).

既然 \(u\geqslant \alpha\), 也就是说 \(P\) 的至少一条对角线长度的平方是被 \(p^\alpha\) 整除. 这对角线把 \(P\) 分为两个小的圆内接多边形 \(P_1\) 和 \(P_2\). 记 \(P_1\) 和 \(P_2\) 的面积分别 \(S_1\) 和 \(S_2\). 于是 \(p^\alpha\mid 2S_1\), \(p^\alpha\mid 2S_2\). 然后 \(p^\alpha\mid (2S_1+2S_2)\), 此即 \(p^\alpha\mid 2S\). 至此, 我们完成了理想.

Problem 4 (Luxembourg)

当 \(n\in\Bbb N\), 则

  1. \(\big(P(n),P(n+1)\big)=1\);
  2. \(\big(P(n),P(n+2)\big)\mid7;\;\big(P(n),P(n+2)\big)=7 \iff   n\equiv 2\pmod 7\);
  3. \(\big(P(n),P(n+3)\big)\mid3;\;\big(P(n),P(n+3)\big)=3 \iff  n \equiv 1 \pmod3\);
  4. \(\big(P(n),P(n+4)\big)\mid19;\;\big(P(n),P(n+4)\big) = 19 \iff  n \equiv 7 \pmod{19}\).

选择正整数 \(a\), 使得

\[a \equiv 7\pmod{19},\; a+1 \equiv 2\pmod7,\;  a+2 \equiv 1\pmod 3,\]

这样的 \(a\) 可以

\[\big(P(a),P(a+4)\big)=19,\; \big(P(a+1),P(a+3)\big)=7,\; \big(P(a+2),P(a+5)\big)=3.\]

于是, \(b=6\) 符合要求.

事实 1 不仅表示 \(b\gt2\), 也说明 \(b=3\) 不可能: \(P(a+1)\), \(P(a+2)\), \(P(a+3)\) 中的 \(P(a+2)\) 与另外两个元素都互素.

\(P(a+1)\), \(P(a+2)\), \(P(a+3)\), \(P(a+4)\), 因为 \(\big(P(a+1),P(a+3)\big)=7\) 与 \(\big(P(a+2),P(a+4)\big)=7\) 不能同时成立, 故 \(b=4\) 不可能存在非负整数 \(a\) 满足要求.

对于 \(P(a+1)\), \(P(a+2)\), \(P(a+3)\), \(P(a+4)\), \(P(a+5)\), 由于 \(P(a+3)\) 与 \(P(a+2)\) 以及 \(P(a+4)\) 都互素, 如果 \(P(a+3)\) 与 \(P(a+1)\) 以及 \(P(a+5)\) 的一个不互素, 则必定 \(7\mid P(a+3)\), \(P(a+2)\) 以及 \(P(a+4)\) 都不是 \(7\) 的倍数, 进而 \(\big(P(a+2),P(a+4)\big)=1\). 注意

\[ \big(P(a+2),P(a+5)\big)=3,\; \big(P(a+1),P(a+4)\big)=3\]

不能同时为真, 因此 \(b=5\) 不可能存在非负整数 \(a\) 满足要求.

Lemma 1   当 \(n\) 为正整数, \(9\not\mid P(n) \).

事实上, 注意

\[4(n^2+n+1)=(2n+1)^2+3,\]

无论 \(3\mid (2n+1) \) 与否, 都有 \(9\not\mid \big((2n+1)^2+3\big) \). 因此, \(9\not\mid P(n) \).

Lemma 2   当 \(n\), \(m\) 都是正整数,  \(\big(P(n),P(n+m)\big)\mid (m^3+3m)\).

首先, \(P(n+m)-P(n)=m^2+2nm+m\), 以及

\begin{equation}\begin{split}n\big(P(n+m)-P(n)\big)-2mP(n)&=\big(2mn^2+(m^2+m)n\big)-\big(2mn^2+2mn+2m\big)\\&=\big(m^2-m\big)n-2m.\end{split}\end{equation}

于是 \(\big(P(n),P(n+m)\big)\mid \big(X, Y\big)\), 这里 \(X=m^2+2nm+m\), \(Y=\big(m^2-m\big)n-2m\). 然后

\[\big(m-1\big)X-2Y=\big(m-1\big)(m^2+2nm+m)-2\Big(\big(m^2-m\big)n-2m\Big)=m^3+3m.\]

Lemma 3  命 \(p\) 为素数. 同余方程

\[x^2+a_1x+a_0\equiv 0\pmod p\]

之解数 \(\leqslant 2\).

Lemma 4  当整数 \(t \equiv n, n^2\pmod{P(n)}\), 必定 \(P(t) \equiv 0 \pmod{P(n)}\).

事实上, 在 \(t \equiv n^2 \pmod {P(n)}\) 时,

\[P(t)\equiv n^4 + n^2 + 1 =  (n^2-n+1)  (n^2+n+1) \equiv 0  \pmod {P(n)}.\]

于是,
\(n \equiv 1 \pmod 3\), 则 \(P(n) \equiv 0 \pmod 3\);
\(n \equiv 2,4 \pmod 7\), 则 \( P(n)\equiv 0 \pmod 7\);
\(n\equiv7, 49\pmod{57}\), 则 \( P(n)\equiv 0\pmod {57}\). 这导致当 \(n\equiv 7, 11\pmod {19}\) 时, 有 \(P(n)\equiv0\pmod{19}\)

至此, 结合 Lemma 3, 并且注意 \(n \equiv 0, 2 \pmod 3\) 蕴涵 \(3\not\mid P(n) \), 以及 Leamma 1, 2 揭示 \(\big(P(n),P(n+1)\big)=1\), \(\big(P(n),P(n+2)\big)\mid7\),\(\big(P(n),P(n+3)\big)\mid3\), \(\big(P(n),P(n+4)\big)\mid19\). 断言事实 1, 2, 3, 4 为真.

Problem 5 ( Russia)

既然 \(x-1\), \(x-2\), \(\dotsc\), \(x-2016\) 都在方程两边恰出现一次, 因此, 欲使得到的方程无实数解, 这 \(2016\) 个一次因式中的每个至多只能在两边出现一次, 即等号两边要擦去至少这 \(2016\) 个一次因式各一次. 故此, \(k\geqslant2016\).

下面我们来指出: 擦去左边所有形如 \(x-(4t-2)\), \(x-(4t-1)\), 右边所有形如 \(x-4t\), \(x-(4t-3)\)(即 \(t=1\), \(2\), \(\dotsc\), \(504\)) 的因式后, 得到的方程

\begin{equation}\begin{split}&\hspace3.25ex(x-1)(x-4)(x-5)(x-8)\dotsm(x-2013)(x-2016)\\&=(x-2)(x-3)(x-6)(x-7)\dotsm(x-2014)(x-2015)\end{split}\end{equation}

无实数根.

事实上, 注意下列 \(504\) 个不等式都是对任意实数 \(x\) 为真:

\begin{equation}\begin{split}
(x-1)(x-4)&\lt(x-2)(x-3);\\
(x-5)(x-8)&\lt(x-6)(x-7);\\
&\vdots\\
(x-2013)(x-2016)&\lt(x-2014)(x-2015).\end{split}\end{equation}

当 \(x\lt1\), \(x\gt2016\), 或存在正整数 \(m\)(\(1\leqslant m\leqslant503\)), 使得 \(4m\lt x\lt4m+1\), 这三种情况之一为真, 上面的 \(504\) 个不等式的两边都为正, 当然 \(x\) 不是方程 \((3)\) 的实数根; 当 \(x\in\{1, 2, 3, \dotsc, 2016\}\) 之时, \((3)\) 的一边为 \(0\), 一边非 \(0\), 因此 \(x\) 不是实数根; 当存在正整数 \(n\)(\(1\leqslant n\leqslant504\)), 使得 \(4n-3\lt x\lt4n-2\) 或 \(4n-1\lt x\lt4n\), 上面的第 \(n\) 个不等式的左边为负, 右边为正, 其余的 \(503\) 个不等式的两边都为正, 因此 \(x\) 不是方程 \((3)\) 的实数根.

剩下的任务, 是解释当 \(x\) 满足 \(4n-2\lt x\lt4n-1\)(\(n\) 是符合 \(1\leqslant n\leqslant504\) 的正整数)时, \(x\) 依旧不是方程 \((3)\) 的根.

注意到下列 \(503\) 个不等式都是对任意实数 \(x\) 为真:

\begin{equation}\begin{split}
(x-4)(x-5)&\gt(x-3)(x-6);\\
(x-8)(x-9)&\gt(x-7)(x-10);\\
&\vdots\\
(x-2012)(x-2013)&\gt(x-2011)(x-2014).\end{split}\end{equation}

当 \(x\) 符合 \(2\leqslant 4n-2\lt x\lt4n-1\leqslant2015\)(\(1\leqslant n\leqslant504\)) 时, (\(5\)) 中的 \(503\) 个不等式的两边都为正, 并且

\[ x-1\gt x-2\gt0,\]

\[-(x-2016)\gt-(x-2015)\gt0.\]

进而, 我们发现

\begin{equation*}-(x-1)(x-4)(x-5)(x-8)\dotsm(x-2013)(x-2016)\gt-(x-2)(x-3)(x-6)(x-7)\dotsm(x-2014)(x-2015)\end{equation*}

因此, 满足 \(4n-2\lt x\lt4n-1\)(\(n\) 是符合 \(1\leqslant n\leqslant504\) 的正整数) 的 \(x\) 不是方程 \((3)\) 的根.

综合起来, 符合要求的正整数 \(k\) 的最小值为 \(2016\).

Problem 6 (The Czech Republic)

可以认为这 \(n\) 条线段是圆的 \(n\) 条弦, 这些弦两两在圆内相交, 任三条弦不交于同一点(否则, 取一个足够大的圆, 使得全部的 \(n\) 条线段都在圆内. 用这些线段所在的直线被这个圆所截的弦来代替这 \(n\) 条线段).

把这 \(n\) 条弦的所有端点依逆时针记为 \(P_1\), \(P_2\), \(\dotsc\), \(P_{2n}\)(下面, 当整数 \(x\), \(y\) 满足 \(x\equiv y\pmod{2n}\) 时, \(P_x\), \(P_y\) 是同一点).

注意, \(P_i\), \(P_{i+n}\) 是同一条弦的两个端点, \(i=1\), \(2\), \(\dotsc\), \(n\).

这是因为, 对于任意两条相交弦, 任意一条的两个端点一定不在另一条的同一侧. 于是, 对于这 \(n\) 条弦的任意一条, 其一侧恰有剩下的 \(n-1\) 条弦的每条弦的一个端点, 另一侧亦有其余的这 \(n-1\) 条弦的每条弦的一个端点. 从而, 任意一条弦的任一侧恰有剩下的 \(n-1\) 条弦的全部 \(2(n-1)\) 个端点中的 \(n-1\) 个, 即线段 \(P_iP_{i+n}\) 是这 \(n\) 条弦中之一.

(a) 在 \(n\) 为奇数, 把青蛙放在 \(P_1\), \(P_3\), \(\dotsc\), \(P_{2n-1}\), 可以实现他的愿望.

首先, 这 \(n\) 个点中的任意两个, 不可能是同一条弦的两个端点. 因为当且仅当整数 \(x\), \(y\) 满足 \(x\equiv y\pmod n\) 时, \(P_x\), \(P_y\) 是同一条弦的端点(包括重合). 在正整数 \(i\), \(j\in\{1, 3, 5, \dotsc, 2n-1\}\), \(i\ne j\), 必定 \(i-j\ne0\), \(-2n\lt i-j\lt2n\). \(i-j\) 是偶数, \(n\) 为奇数蕴涵 \(i-j\ne n\), \(-n\). 故而 \(i\not\equiv j\pmod n\), 即 \(P_i\), \(P_j\) 不是同一条弦的两个端点.

杰夫能实现他的愿意.

事实上, 记 \(P_i\), \(P_j\) 是 \(P_1\), \(P_3\), \(\dotsc\), \(P_{2n-1}\) 中的任意两点. 设弦 \(P_iP_{i+n}\) 与 \(P_jP_{j+n}\) 的交点为 \(A\).

\(P_i\), \(P_j\) 之间有奇数个点(不包括这两点本身). 这奇数个点组成集合 \(S\). 不以 \(S\) 中的点为端点的弦如果与线段 \(P_iA\), \(P_jA\) 中的一个相交, 则必定也与另一个相交, 因为此弦的端点不属于 \(S\), 即不能在\(P_i\), \(P_j\) 之间; 以 \(S\) 中的点为端点的弦必定与线段 \(P_iA\), \(P_jA\) 中的恰好一个相交. \(S\) 有奇数个点, 这表明线段 \(P_iA\), \(P_jA\) 与所有的 \(n\) 条弦的交点个数的奇偶性不同. 进而, 从 \(P_i\), \(P_j\) 出发的青蛙, 任何时刻都不会落在同一个交点.

(b) 杰夫想实现他的理想的话, 青蛙不能放在圆上相邻的端点.

事实上, 记 \(P_i\), \(P_{i+1}\) 是 \(P_1\), \(P_2\), \(\dotsc\), \(P_{2n}\) 中相邻的两点, 即 \(i\in\{1, 2, 3, \dotsc, 2n\}\). 设弦 \(P_iP_{i+n}\) 与 \(P_{i+1}P_{i+1+n}\) 的交点为 \(B\).

所有的 \(n\) 条弦的任意的一条, 如果与线段 \(P_iB\), \(P_{i+1}B\) 中的一个相交, 则必定也与另一个相交, 鉴于此弦的端点不能在\(P_i\), \(P_{i+1}\) 之间. 于是, 线段 \(P_iB\), \(P_{i+1}B\) 与所有的 \(n\) 条弦的交点个数相同. 进而, 从 \(P_i\), \(P_{i+1}\) 出发的青蛙, 会在某个时刻落在同一个交点.

既然青蛙不能放在圆上相邻的端点, 于是, 青蛙只能全部放在 \(P_1\), \(P_3\), \(\dotsc\), \(P_{2n-1}\) 或 \(P_2\), \(P_4\), \(\dotsc\), \(P_{2n}\). 记住 \(n\) 是偶数, 在前一种情况, \(P_1\), \(P_{n+1}\) 有青蛙; 在后一种情况, \(P_2\), \(P_{n+2}\) 有青蛙. 不幸的悲剧是,  \(P_1\), \(P_{n+1}\) 或 \(P_2\), \(P_{n+2}\) 都是一条弦的两个端点.

Annotations

  1. 今年的题, 如果时间充裕一点, 应该都能做出来
  2. 又一次的证明, 出现精彩万分的数论题是多么不容易.
  3. 最好的题是第 3 题, 毫无疑问. 本题需要一点智慧. 如果知道一点代数数论, 本题是有好几种突破口, 请参看续集 IMO 2016 solutions II.
  4. 题 6 不适合作为 Q3 或 Q6, 难度不够, 似乎比 Q2 容易.
 Posted by at 2:44 pm  Tagged with:
Jul 112016
 

                                      Day \(1\)

 Monday, July 11, 2016

Problem 1. Triangle \(BCF\) has a right angle at \(B\). Let \(A\) be the point on line \(CF\) such that \(FA=FB\) and \(F\) lies between \(A\) and \(C\). Point \(D\) is chosen so that \(DA=DC\) and \(AC\) is the bisector of \(\angle DAB\). Point \(E\) is chosen so that \(EA=ED\) and \(AD\) is the bisector of \(\angle EAC\). Let \(M\) be the midpoint of \(CF\). Let \(X\) be the point such that \(AMXE\) is a parallelogram(where \(AM\parallel EX\) and \(AE\parallel MX\)). Prove that \(BD\), \(FX\) and \(ME\) are concurrent.

Problem 2. Find all positive integers \(n\) for which each cell of \(n \times n\) table can be filled with one of the letters \(I\), \(M\) and \(O\) in such a way that:

  • in each row and each column, one third of the entries are \(I\), one third are \(M\) and one third are \(O\); and
  • in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are \(I\), one third are \(M\) and one third are \(O\).

Note. The rows and columns of an \(n\times n\) table are each labelled \(1\) to \(n\) in a natural order. Thus each cell corresponds to a pair of positive integer \((i\), \(j)\) with \(1 \leqslant i\), \(j\leqslant n\). For \(n\gt 1\), the table has \(4n-2\) diagonals of two types. A diagonal of first type consists all cells \((i\), \(j)\) for which \(i+j\) is a constant, and the diagonal of this second type consists all cells \((i\), \(j)\) for which \(i-j\) is constant.

Problem 3. Let \(P=A_1A_2\dotsm A_k\) be a convex polygon in the plane. The vertices \(A_1\), \(A_2\), \(\dotsc\), \(A_k\) have integral coordinates and lie on a circle. Let \(S\) be the area of \(P\). An odd positive integer \(n\) is given such that the squares of the side lengths of \(P\) are integers divisible by \(n\). Prove that \(2S\) is an integer divisible by \(n\).

                                      Day \(2\)

 Tuesday, July 12, 2016

Problem 4. A set of postive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let \(P(n)=n^2+n+1\). What is the least possible positive integer value of \(b\) such that there exists a non-negative integer \(a\) for which the set

\[\{P(a+1),P(a+2),\dotsc,P(a+b)\}\]

is fragrant?

Problem 5. The equation

\[(x-1)(x-2)\dotsm(x-2016)=(x-1)(x-2)\dotsm (x-2016)\]

is written on the board, with \(2016\) linear factors on each side. What is the least possible value of \(k\) for which it is possible to erase exactly \(k\) of these \(4032\) linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?

Problem 6. There are \(n\geqslant 2\) line segments in the plane such that every two segments cross, and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it, facing the other endpoint. Then he will clap his hands \(n-1\) times. Every time he claps, each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will every occupy the same intersection point at the same time.

(a) Prove that Geoff can always fulfill his wish if \(n\) is odd.

(b) Prove that Geoff can never fulfill his wish if \(n\) is even.

 Posted by at 2:04 pm  Tagged with:
Aug 032015
 

第一篇文章有 Problem 3 的几个证明. 第三个证明利用了调和四边形的一些很基本的性质. 第五个证明,  \(M\) 是三角形 \(HYK\) 的外接圆的切线的交点以及 \(F\) 是 \(HY\) 的中点这两件事导出

\[\angle MKH=\angle YKF.\]

这是需要证明的, 并不容易. 不过, 这个结果已经很流行了. 田廷彦在他的”圆”的第三讲有一个例题对锐角三角形的情形给出了两个证明, 但都不能让人满意, 因为都用到了三角函数.

虽然这些知识不是参加竞赛必须掌握, 但如果参赛者想在考场上取得好的分数, 应该不仅仅是记得一些常用的结论, 还要对证明也很熟练.

 Posted by at 12:31 pm  Tagged with:
Jul 112015
 

2015 第 56 届 IMO 解答

Problem 1 (Netherlands 荷兰)

(a)  \(n\) 是奇数.

考察一个周长为 \(n\) 的圆 \(\omega\). 这圆上均匀分布的 \(n\) 个点, 即把圆分成 \(n\) 个长为 \(1\) 的圆弧, 构成点集 \(\mathcal S\). 换句话说, \(\mathcal S\) 的元素即是内接于该圆的正 \(n\) 边形的 \(n\) 个顶点.

我们断言: \(\mathcal S\) 是平衡且无中心的点集.

事实上, \(\mathcal S\) 中任意两个不同的点 \(A\), \(B\) 把圆分成的两个圆弧的弧长都是正整数, 并且两个弧长之和就是圆的周长 \(n\). 既然 \(n\) 为奇数, 这两个圆弧的弧长恰有一个偶数. 于是, 弧长是偶数的那个圆弧的中点 \(C\) 属于 \(\mathcal S\). 此时 \(AC=BC\) 是理所当然. 因而, \(\mathcal S\) 是平衡的.

\(\mathcal S\) 亦是无中心的. \(\mathcal S\) 中任意三个不同的点 \(A\), \(B\), \(C\) 形成的三角形的外心即是 \(\omega\) 的中心. \(\omega\) 的中心显然不在 \(\omega\) 上, 当然也就不在 \(\mathcal S\) 中.

\(n\) 是偶数, 记 \(n=2k+2\), 这里 \(k\) 是正整数.

设 \(\odot O\) 是任意的一个圆. 在这个圆上依逆时针方向选取三点 \(A_1\), \(B_1\), \(C\),  使得 \(\triangle OA_1B_1\) 和 \(\triangle OB_1C\) 都是等边三角形; 再在 \(\widehat{A_1B_1}\) 和 \(\widehat{B_1C}\) 上分别依逆时针方向各选取 \(k-1\) 个点 \(A_2\), \(A_3\), \(\dotsc\), \(A_k\) 和 \(B_2\), \(B_3\), \(\dotsc\), \(B_k\), 使得 \(\triangle OA_iB_i\) 都是等边三角形, \(i=2\), \(3\), \(\dotsc\), \(k\).

\[\mathcal S=\{O, A_1, A_2, \dotsc, A_k, B_1, B_2, \dotsc, B_k, C\}.\]

我们断言: \(\mathcal S\) 是 \(2k+2\) 个点构成的平衡点集.

事实上, \(\mathcal S\) 中的两点如果都落在 \(\odot O\) 上, 则 \(O\) 到这两点的距离相等. 对于 \(O\) 和 \(\mathcal S\) 中的落在 \(\odot O\) 上的一点, 必有 \(\mathcal S\) 的落在 \(\odot O\) 上的第二个点与前两个点构成等边三角形, 进而第二个点到前两个点的距离相等.

(b) 先指出, 若 \(n\gt3\) 为偶数, 不存在由 \(n\) 个点构成的平衡且无中心的点集.

假定 \(\mathcal S\) 是由 \(n\) 个点构成的平衡且无中心的点集. \(\mathcal S\) 中任意两个不同的点 \(A\), \(B\), 都有 \(\mathcal S\) 中的点 \(C\), 满足 \(AC=BC\). 也就是说, 线段 \(AB\) 的中垂线经过 \(C\). 我们把这样的点 \(C\) 称为等腰顶点.

恰有 \(\dbinom n2\) 个互不相同的线段的端点落在 \(\mathcal S\) 中, 于是必定有 \(\dbinom n2\) 个等腰顶点 (一个等腰顶点可能多次计数). 故而, 必定有

\[\frac1n\dbinom n2=\frac{n-1}2\]

等腰顶点其实是 \(\mathcal S\) 中的同一个点. 考虑到 \(n-1\) 是奇数, 必有 \(\dfrac n2\) 个等腰顶点是 \(\mathcal S\) 中的同一点 \(U\), 即有 \(\dfrac n2\) 个线段的中垂线都经过 \(U\). 记这些线段是

\[X_1Y_1, X_2Y_2, \dotsc , X_{\frac n2}Y_{\frac n2}.\]

既然这 \(\dfrac n2\) 个线段的端点都肯定不能是 \(U\), 必有 \(i\), \(j\), \(1\leq i\lt j\leq \dfrac n2\), 使得线段 \(X_iY_i, X_jY_j\) 的端点有重合. 于是, 线段 \(X_iY_i, X_jY_j\) 的端点实际只有三个点互不相同. \(U\) 到这三个点的距离都相同. 这说明, \(\mathcal S\) 不是无中心的.

(a) 已经说明对所有不小于 \(3\) 的奇数 \(n\), 存在由 \(n\) 个点构成的平衡且无中心的点集.

综合起来, 找寻的所有整数即为所有不小于 \(3\) 的奇数.

Problem 2 (Serbia 塞尔维亚)

容易看见的事实是: \(a\), \(b\), \(c\) 都不可能为 \(1\). 因为 \(a=1\) 给出 \(b-c\) 和 \(c-b\) 都是正整数.

如果 \(a\), \(b\), \(c\) 中有相等者, 无妨 \(a=b\), 那么 \(a^2-c\), \(ac-a\) 都是 \(2\) 的方幂. 注意 \(ac-a=a(c-1)\), 因此 \(a\) 和 \(c-1\) 也都是 \(2\) 的方幂. 可设

\begin{equation}a^2-c=2^u,\end{equation}

\begin{equation}a=2^v,\end{equation}

\begin{equation}c=2^w+1,\end{equation}

这里 \(u\), \(v\), \(w\) 都是非负整数. \(a\gt1\) 定出 \(v\gt0\), \(a\) 是偶数.

若 \(u\gt0\), 则 \((1)\) 表明 \(c\) 是偶数, 进而 \((3)\) 表明 \(w=0\). 于是, \(c=2\). 把 \((2)\) 带入 \((1)\)

\begin{equation}2^{2v}-2=2^u.\end{equation}

\(2^u\equiv2\pmod4\) 定出 \(u=1\), 进而 \(v=1\). 于是 \(a=2\), \(b=a=2\).

在 \(u=0\), 则 \((1)\) 成为

\begin{equation}2^{2v}-c=1.\end{equation}

把 \((3)\) 带入上式, 有

\begin{equation}2^{2v}=2^w+2.\end{equation}

\(2^w\equiv2\pmod4\) 定出 \(w=1\), \(c=2^1+1=3\), 进而 \(v=1\).  于是 \(a=2\), \(b=a=2\).

在 \(a\), \(b\), \(c\) 互不相等, 无妨 \(a\gt b\gt c\).

\begin{equation}ab-c=2^x,\;ca-b=2^y,\;bc-a=2^z\end{equation}

这里 \(x\), \(y\), \(z\) 都是非负整数.

\[2^x-2^y=(ab-c)-(ca-b)=(b-c)(a+1)\]

说明 \(ab-c\gt ca-b\), \(x\gt y\), 进而

\begin{equation}2^y\mid(b-c)(a+1).\end{equation}

类似的道理, \(y\gt z\).

然后

\[2^x+2^y=(ab-c)+(ca-b)=(b+c)(a-1)\]

说明

\begin{equation}2^y\mid(b+c)(a-1).\end{equation}

\(a-1\), \(a+1\) 是两个相差 \(2\) 的正整数, 至少有一个不是 \(4\) 的倍数.

如果 \(4\nmid(a+1)\), 则 \(2^y\mid2(b-c)\), 于是 \(2^y\leqslant2(b-c)\). 如果 \(4\nmid(a-1)\), 则 \(2^y\mid2(b+c)\), 于是 \(2^y\leqslant2(b+c)\). 无论哪一种情况, \(2^y\leqslant2(b+c)\) 必真.

\[c(b+1)\leqslant ca=2^y+b\leqslant 2(b+c)+b\]

给出

\[bc\lt3b+c\lt4b,\]

故而 \(c\lt4\).

\(c=2\).

若 \(a\), \(b\) 至少有一个奇数. 我们断定 \(b\) 是奇数, \(a\) 是偶数绝无可能同时发生. 否则, \(ac-b=2a-b\geqslant a\) 表明 \(2a-b\) 是大于 \(1\) 的奇数.

在 \(a\) 是奇数,  则 \(cb-a=2b-a\) 是奇数,  必定 \(2b-a=1\). 因此 \(a=2b-1\).

此时 \(ab-c=b(2b-1)-2=2b^2-b-2\), \(ca-b=2(2b-1)-b=3b-2\) 都是 \(2\) 的方幂. \(b\geqslant2\) 说明 \(2b^2-b-2 \geqslant4b-b-2= 3b-2\), 因此 \(3b-2\) 整除 \(2b^2-b-2\). 然后

\[9(2b^2-b-2)=(3b-2)(6b+1)-16\]

定出 \((3b-2)\mid16\). 从而 \(3b-2\) 可能是 \(2\), \(4\), \(8\), \(16\). \(3b-2\equiv1\pmod3 \) 蕴涵 \(3b-2\) 只可能是 \(4\), \(16\). 此时, \(b=2\), \(6\). 相应地, \(a=3\), \(11\).

在 \(a\), \(b\) 都是偶数.  \(ab-2\equiv2\pmod4\).  但是 \(ab-2\) 是 \(2\) 的方幂, 因此 \(ab-2=2\), \(ab=4\). 所以 \(a=b=2\).

\(c=3\).

\(2^x=ab-3\gt3^2-3\gt4\) 定出 \(x\gt2\), 并且 \(ab-3\) 是偶数, 从而 \(ab\) 是, 进而 \(a\), \(b\) 都是, 奇数.  \(2^x\), \(2^y\), \(2^z\) 都是偶数, 从而 \(x\), \(y\), \(z\) 都是正整数, \(x\gt y\gt z\geqslant1\).

\begin{equation}(3a-b)+(3b-a)=2^y+2^z\end{equation}

得 \(2(a+b)\lt2^{y+1}\), 故 \(a+b\lt2^y\), \(a\lt2^y-b\lt2^y-3\), 进而 \(a-1\lt a+1\lt2^y-b\lt2^y\).

\(2^y=3a-b\gt2a\) 说明 \(a\lt2^{y-1}\).

\((8)\), \((9)\) 表明

\[2^y\mid(b-3)(a+1),\;2^y\mid(b+3)(a-1).\]

\(b\) 为奇数, 所以 \(b-3\), \(b+3\) 恰有一个不被 \(4\) 整除.

在 \(2\parallel(b-3)\) 时, 则 \(2^y\mid2(a+1)\), 即 \(2^{y-1}\mid(a+1)\). 结合 \(a+1\lt2^y\), 导出 \(a+1=2^{y-1}\), 故 \(a=2^{y-1}-1\).

在 \(2\parallel(b+3)\) 时, 则 \(2^y\mid2(a-1)\), 即 \(2^{y-1}\mid(a-1)\). 结合 \(a-1\lt2^y\), 导出 \(a-1=2^{y-1}\), 故 \(a=2^{y-1}+1\). \(a\lt2^{y-1}\) 表示这种情况不会出现.

既然 \(a=2^{y-1}-1\), \(3a-b=2^y\), 因之 \(b=3a-2^y=3(2^{y-1}-1)-2^y=2^{y-1}-3\). 结合 \(3b-a=2^z\), 我们有 \(3(2^{y-1}-3)-(2^{y-1}-1)=2^z\), 即

\[2^y-2^z=8.\]

这也就是

\[2^z(2^{y-z}-1)=8.\]

\(z\), \(y-z\) 都是正整数, 因此 \(2^z=8\), \(2^{y-z}-1=1\). 所以 \(z=3\), \(y-z=1\). 后一式说明 \(y=4\). 于是

\[a=2^{4-1}-1=7,\;b=2^{4-1}-3=5.\]

综上所述, 所有符合要求的正整数解是 \((2,2,2)\), \((3,2,2)\), \((11,6,2)\), \((7,5,3)\), 以及这些解的所有排列.

解答二

把 \(a=2^v\), \(c=2^w+1\) 带入 \(a^2-c=2^u\) 得

\[(2^v)^2-(2^w+1)=2^u.\]

我们看到

\[2^{2v}=2^w+1+2^u.\]

\(v\geqslant1\) 说明

\[2^w+1+2^u\equiv0\pmod4.\]

\(2^w+2^u\) 为奇数表明 \(w\), \(u\) 一个是 \(0\), 另一个大于 \(0\).

\(w=0\) 导出 \(4\mid (1+1+2^u)\), 进而 \(2^u\) 是偶数但不被 \(4\) 整除, 于是 \(u=1\). 此时 \(v=1\),

\[a=2,\; b=a=2,\; c=2^0+1=2.\]

类似, \(u=0\) 给出 \(4\mid (2^w+1+1)\), 进而 \(2^w\) 是偶数但不被 \(4\) 整除, \(w=1\). 此时 \(v=1\),

\[a=2,\; b=a=2,\; c=2^1+1=3.\]

Problem 3 (Ukraine 乌克兰)

这个题比较棘手. 中国队载在这题上了, 只有 1 个队员做出来, 本题一共才得 12 分.

本题的平均分 0.653, 一共有 31 个队员在考场上做出: 得 7 分有 30 人, 得 6 分仅 1 人.

鉴于此, 这里在这个问题多花点笔墨.

记 \(\Gamma\) 的中心是 \(O\). 设 \(AX\) 为 \(\Gamma\) 的直径.

这个问题所有的证明, 也许, 都需要这个事实: \(Q\), \(H\), \(M\), \(X\) 四点共线.

\(AX\) 是 \(\Gamma\) 的直径蕴涵 \(\angle AQX = 90^{\circ}\). \(\angle AQH = 90^{\circ}\) 表明 \(\angle AQX = \angle AQH\), 进而 \(Q\), \(H\), \(X\) 三点共线.

\(AX\) 是 \(\Gamma\) 的直径蕴涵 \(XB\), \(XC\) 分别与 \(AB\), \(AC\) 垂直. \(H\) 是 \(\triangle ABC\) 的垂心宣示 \(HC\), \(HB\) 分别与 \(AB\), \(AC\) 垂直. 因此, 四边形 \(BXCH\) 是平行四边形. \(M\) 是 \(BC\), 进而也是 \(XH\), 的中点. 从而, \(X\), \(M\), \(H\) 三点共线.

综合起来, 我们知道 \(Q\), \(H\), \(M\), \(X\) 四点共线.

不证明四边形 \(BXCH\) 是平行四边形也是可以说明 \(M\) 是 \(XH\) 的中点. 从而, \(X\), \(M\), \(H\) 三点共线.

事实上, 对任何一个三角形 \(ABC\) 的垂心 \(H\), 外心 \(O\), 以及 \(BC\) 的中点 \(M\), 熟知的一个性质是 \(OM\parallel AH\), 且 \(OM=\dfrac12AH\).

这性质很直接很强烈的表达了 \(M\) 就是 \(XH\) 的中点.

IMO 2015 Problem 3 Proof 1

IMO 2015 Problem 3 Proof 1

延长 \(AF\) 交 \(\Gamma\) 于 \(Y\). 注意

\[\angle HKQ=\angle HYX=\angle HFM= 90^{\circ},\]

于是三角形 \(HKQ\) 的外接圆, 三角形 \(HXY\) 的外接圆与三角形 \(HMF\) 的外接圆在 \(H\) 点相切.

\(QK\) 与 \(XY\) 的延长线交于点 \(V\). 于是

\[VQ\cdot VK=VX\cdot VY.\]

故而, \(V\) 在三角形 \(HKQ\) 的外接圆与三角形 \(HXY\) 的外接圆的根轴上. 这个根轴就是 \(VH\), 并且 \(VH\) 是三角形 \(HKQ\) 的外接圆, 三角形 \(HXY\) 的外接圆与三角形 \(HMF\) 的外接圆的公切线. \(VH\perp QX\).

\(AX\) 为 \(\Gamma\) 的直径蕴涵 \(XY\perp AY\). 于是 \(BC\perp AF\) 表明 \(BC\parallel XY\). 设 \(U\) 是 \(VH\) 与 \(BC\) 的交点. \(H\) 是 \(\triangle ABC\) 的垂心揭示 \(F\) 是 \(HY\) 的中点. 至此, \(U\) 是 \(HV\) 的中点. \(\angle HKV= 90^{\circ}\) 蕴涵 \(UK=UH\). \(UH\) 与三角形 \(HKQ\) 的外接圆相切, 故而 \(UK\) 也与三角形 \(HKQ\) 的外接圆相切.

\(U\) 在三角形 \(HMF\) 的外接圆与三角形 \(FKM\) 的外接圆的根轴 \(MF\) 上. \(UH\) 与三角形 \(HMF\) 的外接圆相切. 然后, \(UK=UH\) 蕴涵 \(UK\) 是三角形 \(FKM\) 的外接圆的切线. 于是 \(HKQ\) 的外接圆与三角形 \(FKM\) 的外接圆相切, 因为这两个圆都与 \(UK\) 切于点 \(K\).

解答二

IMO 2015 Problem 3 Proof 2

IMO 2015 Problem 3 Proof 2

延长 \(AF\) 交 \(\Gamma\) 于 \(Y\).

在三角形 \( KQH\) 与 \( KAX\) 中, \(\angle HKQ = \angle XKA= 90^{\circ}\), \(\angle HQK = \angle XQK =\angle XAK\), 于是,

\[\angle KHQ = \angle KXA =\angle KYA=\angle KYH.\]

这说明 \(QX\) 与三角形 \(HYK\) 的外接圆相切.

设 \(U\) 是三角形 \(HYK\) 的外心. \(U\) 在 \(HY\) 在中垂线 \(BC\) 上. \(QX\) 是三角形 \(HYK\) 的外接圆的切线, 所以 \(UH\perp QH\). 于是 \(UH\) 与三角形 \(HKQ\) 的外接圆相切. \(UK=UH\) 说明 \(UK\) 也与三角形 \(HKQ\) 的外接圆相切.

\(UH\perp HM\), \(HF\perp MU\), 根据射影定理

\[UK^2=UH^2=UF\cdot UM.\]

这导出 \(UK\) 是三角形 \(FKM\) 的外接圆的切线. 既然 \(UK\) 是\(HKQ\) 的外接圆与三角形 \(FKM\) 的外接圆的公切线, 从而 \(HKQ\) 的外接圆与三角形 \(FKM\) 的外接圆相切.

解答三

IMO 2015 Problem 3 Proof 3

IMO 2015 Problem 3 Proof 3

延长 \(AF\) 交 \(\Gamma\) 于 \(Y\).

\(H\) 是 \(\triangle ABC\) 的垂心揭示 \(\angle QMC = \angle YMC\), 于是,  四边形 \(BYCQ\) 是调和四边形, 由此 \(\angle QBY = \angle QMC\).

设 \(QZ\) 为 \(\Gamma\) 的直径. 于是 \(\angle QKZ = 90^{\circ}\). \(\angle QKH = 90^{\circ}\) 表明 \(\angle QKZ = \angle QKH\), 进而 \(K\), \(H\), \(Z\) 三点共线.

\(ZQ\) 为 \(\Gamma\) 的直径, 于是  \(\angle ZKY+\angle QBY= 90^{\circ}\). 故此

\[\angle HKY=\angle ZKY= 90^{\circ}-\angle QBY=90^{\circ}-\angle QMC=\angle MHY,\]

这说明 \(XQ\) 与三角形 \(HYK\) 的外接圆相切.

解答四

IMO 2015 Problem 3 Proof 4

IMO 2015 Problem 3 Proof 4

\(QK\) 与 \(BC\) 的延长线交于点 \(W\). 既然 \(HK\perp KW\), \(HF\perp FW\), 于是 \(H\), \(F\), \(W\), \(K\) 四点共圆. 故而

\[\angle KFW=\angle KHW.\]

注意, 三角形 \(ABC\), \(HBC\) 的外接圆的根轴是 \(BC\); 三角形 \(ABC\), \(KQH\) 的外接圆的根轴是 \(QK\). 既然 \(W\) 是 \(BC\) 与 \(QK\) 的交点, 因此 \(W\) 是三个三角形 \(ABC\), \(HBC\), \(KQH\) 的外接圆的根心, 进而 \(HW\) 即是三角形 \(HBC\), \(KQH\) 的外接圆的根轴. 设三角形 \(HBC\), \(KQH\) 的外接圆的 \(H\) 之外的另一个交点是 \(S\), 则 \(S\) 在 \(HW\) 上.

设三角形 \(KQH\) 的外接圆与 \(KF\) 的 \(K\) 之外的另一个交点是 \(T\); \(MS\) 的延长线交三角形 \(ABC\) 的外接圆于 \(K^\prime\);  \(S\) 关于 \(M\) 的对称点是 \(S^\prime\).  注意, \(S^\prime\) 在三角形 \(ABC\) 的外接圆上. 于是

\[\angle QHS=180^{\circ}-\angle MHS=180^{\circ}-\angle MXS^\prime=180^{\circ}-\angle QK^\prime S.\]

故此, \(Q\), \(H\), \(S\), \(K^\prime\) 四点共圆. 因而, \(K\) 与 \(K^\prime\) 重合. 这也就是说, \(M\), \(S\), \(K\) 三点共线.

由于 \(H\), \(S\), \(T\), \(K\) 四点共圆, 于是

\[\angle KFM=180^{\circ}-\angle KFW=180^{\circ}-\angle KHW=\angle KTS.\]

这表明 \(ST\parallel MF \). 进而, 三角形 \(KST\) 与 \(KMF\) 位似, \(K\) 是位似中心. 这也就说明了, \(KST\) 的外接圆与三角形 \(KMF\) 的外接圆在 \(K\) 点相切.

解答五

IMO 2015 Problem 3 Proof 5

IMO 2015 Problem 3 Proof 5

解答三的 \(K\), \(H\), \(Z\) 三点共线, 以及 \(\widehat{XZ}=\widehat{AQ}\), 所以

\[\angle KHQ=\angle HQZ+\angle HZQ=\angle AYQ+\angle QYK=\angle AYK.\]

或者稍微变通一下, \(AX\) 是 \(\Gamma\) 的直径, 因此 \(\widehat{AKX}\) 恰是一个半圆. 因此

\[\angle XQK+\angle AYK=90^{\circ}.\]

注意 \(\angle HKQ=90^{\circ}\), 于是

\[\angle KHQ=90^{\circ}-\angle KQH=\angle HYK.\]

因此, \(QH\) 是三角形 \(HYK\) 的外接圆的切线. 所以 \(\angle QHK=\angle HYK\). 又因为 \(MF\) 是 \(HY\) 的中垂线, 故而

\[\angle MKH=\angle YKF.\]

于是, 我们得出了

\[\angle QHK+\angle MKH=\angle HYK+\angle YKF=\angle HFK.\]

\(QK\perp HK\), \(HF\perp FC\) 给出 \(\angle QHK=90^{\circ}-\angle KQH\),  \(\angle HFK=90^{\circ}-\angle KFC\),  我们有

\[(90^{\circ}-\angle KQH)+\angle MKH=90^{\circ}-\angle KFC.\]

换言之

\[\angle KFC+\angle MKH=\angle KQH.\]

这说明, \(KQH\) 的外接圆与三角形 \(KMF\) 的外接圆在 \(K\) 点相切.

解答六

Problem 4 (Vaggelis Psychas&Silouanos Brazitikos , Greece 希腊)

IMO 2015 Problem 4 Proof 1

IMO 2015 Problem 4 Proof 1

记 \(FG\) 与 \(AC\) 的交点是 \(R\). 连结 \(AG\), \(GC\), \(DF\).

\(FG\) 是 \(\Gamma\) 和 \(\Omega\) 的公共弦蕴涵 \(AO\) 是 \(FG\) 的中垂线. 于是, \(\widehat{AF}=\widehat{AG}\), 进而

\[\angle AGR=\angle AGF=\angle ACF=\angle ACG.\]

这表明 \(\triangle AGR\sim\triangle ACG\). 结合 \(A\), \(B\), \(C\), \(G\) 四点共圆, 我们可有

\[\angle GRC=180^{\circ}-\angle ARG=180^{\circ}-\angle AGC=\angle ABC=\angle KFD.\]

连结 \(FC\), \(EG\). 注意 \(F\), \(D\), \(E\), \(G\) 四点都在圆 \(\Gamma\) 上, 故

\[\angle GFD=\angle GEC=\angle GLC=\angle GLR.\]

至此, 我们得出

\[\angle XGF=\angle GRC-\angle GLR=\angle KFD-\angle GFD=\angle XFG.\]

这说明 \(XG=XF\). 换句话说, \(X\) 在 \(FG\) 的中垂线 \(AO\) 上.

解答二

Problem 5 (Dorlir Ahmeti,Albania 阿尔巴尼亚)

\begin{equation}f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x).\end{equation}

在 \((11)\), 令 \(x=y=0\), 记 \(f(0)=a\), 得

\[f(0+a)+a=0+a.\]

由此 \(f(a)=0\).

在 \((11)\), 令 \(x=0\), \(y=a\), 得

\[f(f(a))+f(0)=0+f(a)+af(0).\]

此即 \(2a=a^2\). 于是 \(a=0\) 或 \(2\).

在 \(a=0\), 即 \(f(0)=0\) 时.

在 \((11)\), 令 \(y=0\), 得

\begin{equation}f(x+f(x))=x+f(x).\end{equation}

在 \((11)\), 令 \(y=1\), 得

\[f(x+f(x+1))+f(x)=x+f(x+1)+f(x).\]

\begin{equation}f(x+f(x+1))=x+f(x+1).\end{equation}

在 \((11)\), 令 \(y=-x\), 得

\begin{equation}f(x)+f(-x^2)=x-xf(x).\end{equation}

在 \((14)\), 令 \(x=-1\), 得 \(f(-1)+f(-1)=-1+f(-1)\). 于是

\begin{equation}f(-1)=-1.\end{equation}

在 \((14)\), 令 \(x=1\), 得 \(f(1)+f(-1)=1-f(1)\). 利用 \((15)\), 得 \(f(1)-1=1-f(1)\). 因而

\begin{equation}f(1)=1.\end{equation}

在 \((11)\), 令 \(x=1\), \(y=x-1+f(x)\), 注意 \((16)\), 得

\[f(1+f(x+f(x)))+f(x-1+f(x))=1+f(x+f(x))+(x-1+f(x)).\]

结合 \((12)\),\((13)\), 此即

\[f(1+x+f(x))+(x-1+f(x))=1+(x+f(x))+(x-1+f(x)).\]

\begin{equation}f(1+x+f(x))=1+x+f(x).\end{equation}

在 \((11)\), 令 \(y=-1\), 得

\[f(x+f(x-1))+f(-x)=x+f(x-1)-f(x).\]

结合 \((17)\), 此即

\[x+f(x-1)+f(-x)=x+f(x-1)-f(x).\]

\begin{equation}f(-x)=-f(x).\end{equation}

在 \((11)\), 将 \(x\) 换成 \(-x\), \(y\) 换成 \(x\), 得

\begin{equation}f(-x)+f(-x^2)=-x+xf(-x).\end{equation}

\((14)\), \((19)\) 两式相减, 得

\[(f(x)+f(-x^2))-(f(-x)+f(-x^2))=(x-xf(x))-(-x+xf(-x)).\]

\[f(x)-f(-x)=2x-x(f(x)+f(-x)).\]

\((18)\) 说明这就是 \(2f(x)=2x\). 所以, \(f(x)=x\).

在 \(a=2\), 即 \(f(0)=2\) 时.

在 \((11)\), 令 \(y=1\), 得

\begin{equation}f(x+f(x+1))=x+f(x+1).\end{equation}

在 \((11)\), 令 \(x=0\), \(y=x-1+f(x)\), 得

\[f(f(x-1+f(x)))+2=f(x-1+f(x))+2(x-1+f(x)).\]

利用 \((20)\), 此即

\[x-1+f(x)+2=x-1+f(x)+2(x-1+f(x)).\]

故而, \(f(x)=2-x\).

经检验, \(f(x)=2-x\) 和 \(f(x)=x\) 确实符合要求.

综上所述, 所有的寻找的函数即是 \(f(x)=x\) 以及 \(f(x)=2-x\).

Problem 6 (Ross Atkins&Ivan Guo, Australia 澳大利亚)

考察 \(d_j=a_j+j\),  \(j=1\), \(2\), \(\dotsc\). 于是, 正整数序列 \(d_1\), \(d_2\), \(\dotsc\) 互不相同, 并且对每个正整数 \(j\geqslant1\), 有 \(j+1\leqslant d_j\leqslant j+2015\).

显然, 肯定有正整数不会在序列 \(\{d_j\}\) 中出现, 比如 \(1\). 我们指出, 至多有 \(2015\) 个正整数 \(z\), 使得不存在正整数 \(j\), 满足 \(d_j=z\). 换句话说, 集合 \(\{1, 2, 3, \dotsc\}\setminus\{d_1, d_2,\dotsc\}\) 的元素个数 \(b\), 成立 \(1\leqslant b\leqslant 2015\).

对每个正整数 \(j\geqslant1\), 记

\[N_j=\{1, 2, 3, \dotsc, j\},\;D_j=\{d_1, d_2, d_3, \dotsc, d_j\}.\]

设 \(L\gt2015\) 是任意的正整数. 对任意的正整数 \(j\), \(1\leqslant j\leqslant L-2015\),

\[d_j\leqslant j+2015\leqslant(L-2015)+2015=L,\]

于是, \(d_j\in N_L\). 注意 \(d_1\), \(d_2\), \(\dotsc\), \(d_{L-2015}\) 是 \(L-2015\) 个互不相同的正整数, 于是 \(N_L\cap\{d_1, d_2,\dotsc\}\) 的元素个数 \(\geqslant L-2015\). \(N_L\setminus\{d_1, d_2,\dotsc\}\), 进而 \(\{1, 2, 3, \dotsc\}\setminus\{d_1, d_2,\dotsc\}\), 的元素个数 \(\leqslant2015\).

至此, 我们证明了 \(1\leqslant b\leqslant 2015\).

设 \(Y=\{z_1, z_2, \dotsc, z_b\}\) 是所有的没有在序列 \(\{d_j\}\) 中出现的 \(b\) 个正整数组成的集合. 于是 \(Y\cup\{d_1, d_2, d_3\dotsc\}\) 恰好就是全部正整数形成的集合.

取定一个正整数 \(N\gt\max\{z_1, z_2, \dotsc, z_b\}\).

设 \(n\) 和 \(m\) 是任意的满足 \(n\gt m\geqslant N\) 的整数.

\(Y\) 中的元素小于 \(N\), 当然更小于 \( m+2015\); \(D_m\) 中的元素 \(d_k\)(\(k\leqslant m\)) 必定 \(d_k\leqslant k+2015\leqslant m+2015\), 因此 \(Y\cup D_m\subset N_{m+2015}\). 此外, 当 \(k\leqslant m+1\) 时, \(k\) 要么属于 \(Y\), 要么存在正整数 \(t\lt k\), 使得 \(d_t=k\). 因此, \(N_{m+1}\subset Y\cup D_m\), \(Y\cup D_m\) 恰有 \(b-1\) 个元素属于 \(N_{m+2015}\setminus N_{m+1}\). 于是

\begin{equation}\sum_{k=1}^{m+b}k\leqslant\sum_{k=1}^md_k+\sum_{k=1}^bz_k\leqslant\sum_{k=1}^{m+1}k+\sum_{k=m+2017-b}^{m+2015}k.\end{equation}

当然, \((21)\) 中的 \(m\) 换成 \(n\) 也是成立的.

当 \(b=1\) 时,

\begin{equation}\sum_{k=1}^md_k+\sum_{k=1}^bz_k=\sum_{k=1}^{m+1}k,\end{equation}

\begin{equation}\sum_{k=1}^nd_k+\sum_{k=1}^bz_k=\sum_{k=1}^{n+1}k.\end{equation}

于是

\begin{equation}\sum_{k=m+1}^nd_k=\sum_{k=m+2}^{n+1}k.\end{equation}

\begin{equation}\sum_{k=m+1}^nd_k=\sum_{k=m+1}^n\Big(k+1\Big).\end{equation}

因 \(d_k=a_k+k\), \(b=1\), 这就是

\begin{equation}\sum_{k=m+1}^n\Big(a_k-b\Big)=0.\end{equation}

下面, 我们假定 \(b\geq2\).  由 \((21)\), 我们可有

\begin{equation}\left(\sum_{k=1}^nd_k+\sum_{k=1}^bz_k\right)-\left(\sum_{k=1}^md_k+\sum_{k=1}^bz_k\right)\geqslant\sum_{k=1}^{n+b}k-\left(\sum_{k=1}^{m+1}k+\sum_{k=m+2017-b}^{m+2015}k\right),\end{equation}

\begin{equation}\left(\sum_{k=1}^nd_k+\sum_{k=1}^bz_k\right)-\left(\sum_{k=1}^md_k+\sum_{k=1}^bz_k\right)\leqslant\left(\sum_{k=1}^{n+1}k+\sum_{k=n+2017-b}^{n+2015}k\right)-\sum_{k=1}^{m+b}k.\end{equation}

\((27)\) 即

\begin{equation}\sum_{k=m+1}^nd_k\geqslant\sum_{k=m+2}^{n+b}k-\sum_{k=m+2017-b}^{m+2015}k.\end{equation}

注意

\begin{equation}\sum_{k=m+2}^{n+b}k=\sum_{k=m+2}^{m+b}k+\sum_{k=m+b+1}^{n+b}k=\sum_{k=2}^b\Big(k+m\Big)+\sum_{k=m+1}^n\Big(k+b\Big).\end{equation}

\begin{equation}\sum_{k=m+2017-b}^{m+2015}k=\sum_{k=2}^b\Big(k+m+2015-b\Big)=\sum_{k=2}^b\Big(k+m\Big)+\sum_{k=2}^b\Big(2015-b\Big).\end{equation}

\((29)\) 就是

\begin{equation}\sum_{k=m+1}^nd_k\geqslant\sum_{k=m+1}^n\Big(k+b\Big)-\sum_{k=2}^b\Big(2015-b\Big).\end{equation}

\begin{equation}\sum_{k=m+1}^n\Big(d_k-k-b\Big)\geqslant-\sum_{k=2}^b\Big(2015-b\Big).\end{equation}

因为 \(d_k=a_k+k\), 所以

\begin{equation}\sum_{k=m+1}^n\Big(a_k-b\Big)\geqslant-\Big(b-1\Big)\Big(2015-b\Big).\end{equation}

类似的道理, \((28)\) 即, 当 \(n+1\geq m+b\) 时

\begin{equation}\sum_{k=m+1}^nd_k\leqslant\sum_{k=n+2017-b}^{n+2015}k+\sum_{k=m+b+1}^{n+1}k;\end{equation}

或, 当 \(n+1\lt m+b\) 时

\begin{equation}\sum_{k=m+1}^nd_k\leqslant\sum_{k=n+2017-b}^{n+2015}k-\sum_{k=n+2}^{m+b}k.\end{equation}

注意

\begin{equation}\begin{split}\sum_{k=n+2017-b}^{n+2015}k&=\sum_{k=2}^b\Big(k+n+2015-b\Big)\\&=\sum_{k=2}^b\Big(k+n\Big)+\sum_{k=2}^b\Big(2015-b\Big)\\&=\sum_{k=n+2}^{n+b}k+\sum_{k=2}^b\Big(2015-b\Big),\end{split}\end{equation}

于是, 当 \(n+1\geq m+b\) 时

\begin{equation}\begin{split}\sum_{k=m+1}^nd_k&\leqslant\sum_{k=m+b+1}^{n+1}k+\sum_{k=n+2}^{n+b}k+\sum_{k=2}^b\Big(2015-b\Big)\\&=\sum_{k=m+b+1}^{n+b}k+\sum_{k=2}^b\Big(2015-b\Big)\\&=\sum_{k=m+1}^n\Big(k+b\Big)+\sum_{k=2}^b\Big(2015-b\Big);\end{split}\end{equation}

当 \(n+1\lt m+b\) 时

\begin{equation}\begin{split}\sum_{k=m+1}^nd_k&\leqslant\sum_{k=n+2}^{n+b}k+\sum_{k=2}^b\Big(2015-b\Big)-\sum_{k=n+2}^{m+b}k\\&=\sum_{k=m+b+1}^{n+b}k+\sum_{k=2}^b\Big(2015-b\Big)\\&=\sum_{k=m+1}^n\Big(k+b\Big)+\sum_{k=2}^b\Big(2015-b\Big).\end{split}\end{equation}

故此, 无论哪一种情况, 因为 \(d_k=a_k+k\), 所以

\begin{equation}\sum_{k=m+1}^n\Big(a_k-b\Big)\leqslant\Big(b-1\Big)\Big(2015-b\Big).\end{equation}

综合 \((34)\), \((40)\), 利用算术几何平均不等式,

\[\left|\sum_{k=m+1}^n\Big(a_k-b\Big)\right|\leqslant\Big(b-1\Big)\Big(2015-b\Big)\leqslant1007^2.\]

看到我们的魂牵梦绕.

Annotations

  1. 本届 IMO 其实不是最难, 恰恰相反, 应该是史上最简单, 大概与 1989 年相当. 分数低与训练有关, 不完全真实反映试题的难易.
  2. 题 1(a) 是陈题, 已经多次出现; 把 (a) 中对偶数 \(2k+2\) 构造的平衡点集的点 \(C\) 去掉, 得到的 \(2k+1\) 个点形成的点集亦是平衡的; 找出 (a) 所有符合要求的构造可能是困难的. 也就是说, 对整数 \(n\geq3\), 希望找出所有的由 \(n\) 个点构成的平衡点集.
  3. 题 3 的几何, 其实比最近几年的以 3 或 6 出现的几何简单很多. 通常, 如果考察的是三角形一些常见的点及其外接圆的性质, 不应当有太多人做不出的.
  4. 题 5 是函数方程. 一般来说, 一个函数方程可能是真正有难度的问题, 如果任何解法都避不了某关键的性质, 诸如特定集合的一个非常特殊的性质, 或者必须使用不等式.
 Posted by at 4:10 pm  Tagged with:
Jul 112015
 

                                      Day \(1\)

 Friday, July 10, 2015

Problem 1. We say that a finite set \(\mathcal S\) of points in the plane is balanced if, for any two different points \(A\) and \(B\) in \(\mathcal{S}\), there is a point \(C\) in \(\mathcal{S}\) such that \(AC=BC\). We say that \(\mathcal{S}\) is centre-free if for any three different points \(A\), \(B\) and \(C\) in \(\mathcal{S}\), there is no points \(P\) in \(\mathcal{S}\) such that \(PA=PB=PC\).

(a) Show that for all integers \(n\ge 3\), there exists a balanced set consisting of \(n\) points.

(b) Determine all integers \(n\ge 3\) for which there exists a balanced centre-free set consisting of \(n\) points.

Problem 2.  Determine all triples \((a, b, c)\) of positive integers such that each of the numbers

\[ab-c,\;bc-a, \;ca-b\]

is a power of \(2\).

(A power of \(2\) is an integer of the form \(2^n\), where \(n\) is a non-negative integer. )

Problem 3. Let \(ABC\) be an acute triangle with \(AB \gt AC\). Let \(\Gamma\) be its cirumcircle, \(H\) its orthocenter, and \(F\) the foot of the altitude from \(A\). Let \(M\) be the midpoint of \(BC\). Let \(Q\) be the point on \(\Gamma\) such that \(\angle HQA = 90^{\circ}\) and let \(K\) be the point on \(\Gamma\) such that \(\angle HKQ = 90^{\circ}\). Assume that the points \(A\), \(B\), \(C\), \(K\) and \(Q\) are all different, and lie on \(\Gamma\) in this order.

Prove that the circumcircles of triangles \(KQH\) and \(FKM\) are tangent to each other.

                                      Day \(2\)

 Saturday, July 11, 2015

Problem 4. Triangle \(ABC\) has circumcircle \(\Omega\) and circumcenter \(O\). A circle \(\Gamma\) with center \(A\) intersects the segment \(BC\) at points \(D\) and \(E\), such that \(B\), \(D\), \(E\), and \(C\) are all different and lie on line \(BC\) in this order. Let \(F\) and \(G\) be the points of intersection of \(\Gamma\) and \(\Omega\), such that \(A\), \(F\), \(B\), \(C\), and \(G\) lie on \(\Omega\) in this order. Let \(K\) be the second point of intersection of the circumcircle of triangle \(BDF\) and the segment \(AB\). Let \(L\) be the second point of intersection of the circumcircle of triangle \(CGE\) and the segment \(CA\).

Suppose that the lines \(FK\) and \(GL\) are different and intersect at the point \(X\). Prove that \(X\) lies on the line \(AO\).

Problem 5. Let \(\Bbb R\) be the set of real numbers. Determine all functions \(f\colon\Bbb R\to\Bbb R\) satisfying the equation

\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]

for all real numbers \(x\) and \(y\).

Problem 6. The sequence \(a_1,a_2,\dotsc\) of integers satisfies the following conditions:

(i) \(1\leqslant a_j\leqslant2015\) for all \(j\geqslant1\);

(ii) \(k+a_k\neq \ell+a_\ell\) for all \(1\leqslant k\lt \ell\).

Prove that there exist two positive integers \(b\) and \(N\) such that

\[\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\leqslant1007^2\]

for all integers \(m\) and \(n\) satisfying \(n\gt m\geqslant N\).

 Posted by at 4:00 pm  Tagged with: