设 \(p\) 是实系数的 \(n\) 元多项式, \(S\) 是 \(n\) 维 Euclidean space \(\Bbb R^n\) 的子集. 我们说 \(p\) 在 \(S\) 上是非负的(non-negative), 如果对于任意的 \(x\in S\), 有 \(p(x)\geqslant0\).
我们下面关注的重点是 \(\Bbb R^n\) 上的非负(non-negative)多项式, 即对于任意的 \(x\in \Bbb R^n\), 有 \(p(x)\geqslant0\).
要探讨的, 非负多项式是否就是可以表为多项式的平方和的那些多项式? 这是一个古老的问题, 与 Hilbert’s seventeenth problem 有关, 早已有答案: 回答”差不多”是肯定的. 换言之, 非负多项式确实可以表示成平方和, 但一般而言是有理函数而不是多项式的平方和.
先从简单的情形一元多项式开始.
Theorem 1.1 \(p(x)\geqslant0\) 对所有的实数 \(x\) 为真, 则存在一元多项式 \(f(x)\) 和 \(g(x)\), 使得 \(p(x)=f^2(x)+g^2(x)\) 恒成立.
这是一个平凡的结果, 估计可以在很多的高等代数的书上找到, 使用一下实系数多项式的因式分解标准式即可.
我们可以按照这个步骤来验证:
设
\begin{equation} p=a\prod_{i=1}^k(x-a_i)^{m_i}\prod_{j=1}^l\Big(x^2+2b_jx+c_j\Big),\end{equation}
这里诸 \(a_i\) 皆是实数, 诸 \(x^2+2b_jx+c_j\) 都无实根.
那么, 以下三条陈述相互等价:
- \(p(x)\geqslant0\) on \(\Bbb R\);
- \(a\gt0\), 且诸 \(m_i\) 都是偶数;
- 存在多项式 \(f(x)\) 和 \(g(x)\), 使得 \(p(x)=f^2(x)+g^2(x)\).
事实上, 很容易说明 \( 1 \implies 2 \implies 3 \implies 1\).
定理 1.1 其实是基于 \(\Bbb C[x]\) 与 Gaussian integers \(\Bbb Z[i]\) 的一个类比. 把 \(\Bbb C[x]\) 视为 Euclidean domain \(\Bbb R[x]\) 添加 \(i\) 得到的二次扩张; \(\Bbb Z[i]\) 看作 Euclidean domain \(\Bbb Z\) 添加 \(i\) 得到的二次扩张. 在这个类比, 线性多项式类似 \(3\pmod4\) 的质数, 后者依旧是 \(\Bbb Z[i]\) 中的质数; 二次不可约多项式类似非 \(3\pmod4\) 的质数, 后者不是 \(\Bbb Z[i]\) 中的质数. 非 \(0\) 整数 \(n\in Z\) 是两个整数的平方和当且仅当其为正并且每个 \(3\pmod4\) 的质数因子在标准分解式出现偶数次. 类似的, 多项式 \(p\in\Bbb R[x]\) 是两个多项式的平方和当且仅当取值非负并且每个线性因子出现偶数次.
多元多项式的情形复杂得多. 我们不能指望 Theorem 1.1 可以简单的推广到多元多项式. 事实上, 只在很少的情况下, 非负多元多项式可以写成多项式的平方和.
一般来说, 如果 \(R[i]\) 和 \(R\) 都是唯一因子分解整环(Gauss domain), 那么 \(R\) 中的某些质数在 \(R[i]\) 有两个共轭, 但 \(R\) 中其余的那些质数依旧是 \(R[i]\) 的质数. 这使得我们总能对 \(R\) 中那些能写成两个平方和的元素予以某种刻画. 这些道理对多元多项式环 \(R=\Bbb R[x]\) 确实是适用. 但是, 出现问题的地方即在于对于 \(\Bbb R[x]\) 的非负多项式 \(p\), 其不可约因子不一定出现偶数次.