Aug 182012
Zagier 的一句话证明(1990)
有限集 \(S=\{(x,y,z)\in\Bbb N^3|x^2+4yz=p\}\) 上的对合(Involution)
\[f:S\rightarrow S,\quad (x,y,z)\mapsto\begin{cases}(x+2z,z,y-x-z)\quad x<y-z;\\(2y-x,y,x-y+z)\quad y-z<x<2y;\\(x-2y,x-y+z,y)\quad 2y<x,\end{cases}\]
恰有一个不动点 \((1,1,\frac{p-1}4)\), 这意味着 \(|S|\) 为奇数, 从而 \(S\) 的另一个对合
\[g:S\rightarrow S,\quad(x,y,z)\mapsto(x,z,y)\]
必有不动点 \((x,y,z)\), 它满足 \(y=z\), 进而
\[p=x^2+4y^2=x^2+(2y)^2. \Box\]