May 262013
 

Busy day in analytic number theory

On May 13, 2013, Harald Andres Helfgott  uploaded to the arXiv his paper “Major arcs for Goldbach’s theorem” claimed that he has proved the ternary Goldbach conjecture, or odd Goldbach conjecture, asserts that every odd integer  \(n>5\) is the sum of three primes.

这论文仅仅证明了每个 \(>10^{30}\) 的奇数可以表示为三个质数之和. 至于 \(<10^{30}\) 的奇数, 已经通过计算机进行验证. 计算机实际上, 已经计算过, 对于 \(<8.875\cdot10^{30}\) 的奇数, Goldbach’s conjecture 都是对的. 这样, 奇数 Goldbach’s conjecture 彻底终结.

这文章采用是基于圆法 (Hardy–Littlewood circle method), 大筛法(the large sieve) and exponential sums 的一种途径.

Goldbach’s conjecture 已经有 \(271\) 年的历史了.

Jun 072012
 

Terence Tao(陶哲轩)\(1\)月\(31\)日, 提交了一篇论文 “Every odd number greater than 1 is the sum of at most five primes“. 这篇文章的主要结果, 正如标题展示的, 每个奇数可以表示为不超过\(5\)个质数之和. 显然, 这个结果和 Goldbach’s conjecture(哥德巴赫猜想)有关, 把奇数情形的哥德巴赫猜想, 即弱哥德巴赫猜想(Goldbach’s weak conjecture)推进了一步, 也改进了 Ramare 的结论: 每个偶数可以表示为不超过\(6\)个质数的和.

Tao 的论文, 有 \(44\) 页, 这里是pdf . 所采用的工具, 是哈代和立特伍德所创造的圆法(Hardy–Littlewood circle method), 结合了一些另外的技巧.

次日, Tao 在他的博客 之中, 写了一篇日志 描述了证明的大概轮廓.

这个事情最近上了新闻. 这是意料当中的情事! 这篇论文已提交学术刊物, 专家们正在审查. 英国《自然》杂志网站\(5\)月\(14\)日报道说, 陶哲轩在研究“弱哥德巴赫猜想”上取得突破, 有望最终解决这个世纪难题, 详细的报道在这个Mathematicians come closer to solving Goldbach’s weak conjecture.